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1 Getting Started

Financial Instruments Toolbox Product Description

Design, price, and hedge complex financial instruments

Financial Instruments Toolbox™ provides functions for pricing, modeling, and analyzing
fixed-income, credit, and equity instrument portfolios. You can use the toolbox to perform
cash-flow modeling and yield curve fitting analysis, compute prices and sensitivities,
view price evolutions, and perform hedging analyses using common equity and fixed-
income modeling methods. The toolbox lets you create new financial instrument types,

fit yield curves to market data using parametric fitting models and bootstrapping, and
construct dual curve-based pricing models.

You can price and analyze fixed-income and equity instruments. For fixed-income
modeling, you can calculate price, yield, spread, and sensitivity values for several types
of securities and derivatives, including convertible bonds, mortgage-backed securities,
treasury bills, bonds, swaps, caps, floors, and floating-rate notes. For equities, you can
compute price, implied volatility, and greek values of vanilla options and several exotic
derivatives.

Financial Instruments Toolbox contains functions to model counterparty credit risk and
CVA exposure. For credit derivatives, the toolbox includes credit default swap pricing
and default probability curve modeling functions. For energy derivatives, you can model
exotic and vanilla options. The toolbox also provides connectivity to Numerix® CrossAsset
Integration Layer.

Key Features

* Yield curve fitting with bootstrapping and parametric fitting models, and term-
structure analysis with dual curve construction and pricing of swaps, caps, floors, and
swaptions (using LIBOR-OIS and other curves)

+ Black Scholes, Black, Garman-Kohlhagen, Roll-Geske-Whaley, Bjerksund-Stensland,
Nengjiu Ju, Stulz, Levy jump diffusion, Longstaff-Schwartz, SABR, and tree models
and Monte Carlo simulation

+  Fixed-income and equity derivative calculations for price, yield, discount rate, cash-
flow schedule, spread, implied volatility, option adjusted spread (OAS), and greeks

*  Counterparty credit risk, CVA modeling, and credit instruments for mortgage pools,
balloon mortgages, and credit default swaps

+ Interest-rate instruments: bonds, stepped-coupon bonds, futures, vanilla options,
Bermudan options, bonds with embedded options, vanilla swaps, forward swaps,



Financial Instruments Toolbox Product Description

amortizing swaps, swaptions, caps, floors, range notes, floating-rate notes, and
collared floating-rate notes

Equity instruments: stocks, vanilla options, Bermudan options, Asian options,
lookback options, barrier options, digital options, rainbow options, basket options,
compound options, and chooser options

Energy and commodity instruments: Asian options, Bermudan options, lookback
options, swing options, spread options, and vanilla European/American options
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Interest-Rate-Based Derivatives
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The toolbox provides functionality that supports the creation and management of these
interest-rate-based instruments:

* Bonds

* Bond options (puts and calls)

*  Bond with embedded options

+ Caps

+ Convertible bonds

+ Fixed-rate notes

* Floating-rate notes

* Floors

* Swaps

*  Swaption

Additionally, the toolbox provides functions to create arbitrary cash flow instruments.
The toolbox provides pricing and sensitivity routines for these instruments. For more
information, see “Pricing Using Interest-Rate Term Structure” on page 2-70 ,“Pricing

Using Interest-Rate Tree Models” on page 2-97, and“Interest-Rate Derivatives Using
Closed-Form Solutions” on page 2-119.

See Also

instbond | instcap | instcbond | instcf | instfixed | instfloat |
instfloor | instoptbnd | instoptembnd | instoptemfloat | instoptfloat |
instrangefloat | instswap | instswaption

Related Examples

. “Creating Instruments or Properties” on page 1-19
More About
. “Supported Interest-Rate Instruments” on page 2-2

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41



Equity-Based Derivatives

Equity-Based Derivatives

The toolbox also provides functions to create and manage various equity-based
derivatives, including the following:

* Asian options

* Barrier options

+ Basket options

+  Compound options

+ Convertible bonds

+ Digital options

* Lookback options

*  Rainbow options

+ Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these instruments. (See

“Pricing Equity Derivatives Using Trees” on page 3-120, “Equity Derivatives Using
Closed-Form Solutions” on page 3-140, and “Basket Option” on page 3-27.)

See Also
instasian | instbarrier | instcbond | instcompound | instlookback |
instoptstock

Related Examples
. “Creating Instruments or Properties” on page 1-19

. “Pricing Equity Derivatives Using Trees” on page 3-120

More About

. “Supported Equity Derivatives” on page 3-24
. “Supported Interest-Rate Instruments” on page 2-2

. “Supported Energy Derivatives” on page 3-41

1-5



1 Getting Started

Expected Users

In general, this guide assumes experience working with financial derivatives and some
familiarity with the underlying models.

In designing Financial Instruments Toolbox documentation, we assume that your title is
similar to one of these:

+ Analyst, quantitative analyst

* Risk manager

* Portfolio manager

*  Fund manager, asset manager

* Financial engineer

* Trader

+ Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match
some aspects of this profile:

* Finance, economics, perhaps accounting

* Engineering, mathematics, physics, other quantitative sciences

* Bachelor's degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

+  Comfortable with probability theory, statistics, and algebra

*  Understand linear or matrix algebra, calculus, and differential equations

* Previously done traditional programming (C, Fortran, etc.)

* Responsible for instruments or analyses involving large sums of money

*  Perhaps new to MATLAB®



Portfolio Creation

Portfolio Creation

In this section...

“Introduction” on page 1-7

“Interest-Rate-Based Derivatives” on page 1-7

“Equity Derivatives” on page 1-8

Introduction

The instadd function creates a set of instruments (portfolio) or adds instruments to
an existing instrument collection. The TypeString argument specifies the type of

the investment instrument. For interest-rate-based derivatives, the types are: Bond,
OptBond, CashFlow, Fixed, Float, Cap, Floor, and Swap. For equity derivatives, the
types are Asian, Barrier, Compound, Lookback, and OptStock.

The input arguments following TypeString are specific to the type of investment
instrument. Thus, the TypeString argument determines how the remainder of the
input arguments is interpreted. For example, instadd with the type character vector for
Bond creates a portfolio of bond instruments.

InstSet = instadd("Bond", CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Interest-Rate-Based Derivatives

In addition to the bond instrument already described, the toolbox can create portfolios
containing the following set of interest-rate-based derivatives:

* Bond option

InstSet = instadd("OptBond", Bondlndex, OptSpec, Strike, ExerciseDates, AmericanOpt)
* Arbitrary cash flow instrument

InstSet = instadd("CashFlow", CFlowAmounts, CFlowDates, Settle, Basis)
* Fixed-rate note instrument

InstSet = instadd("Fixed", CouponRate, Settle, Maturity, FixedReset, Basis, Principal)

* Floating-rate note instrument
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InstSet = instadd("Float®, Spread, Settle, Maturity, FloatReset, Basis, Principal)
+  Cap instrument

InstSet = instadd("Cap”, Strike, Settle, Maturity, CapReset, Basis, Principal)
+ Convertible bond instrument

InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
*  Floor instrument

InstSet = instadd("Floor®, Strike, Settle, Maturity, FloorReset, Basis, Principal)
*  Swap instrument

InstSet = instadd("Swap”, LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)
* Swaption instrument

InstSet = instadd("Swaption”, OptSpec, Strike, ExerciseDates, Spread, ...
Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

* Bond with embedded option instrument
InstSet = instadd("OptEmBond", CouponRate, Settle, Maturity, OptSpec, Strike, ...
ExerciseDates, "AmericanOpt®, AmericanOpt, "Period®, Period,"Basis”, Basis,

“EndMonthRule®, EndMonthRule, "Face®,Face, "IssueDate”, IssueDate, "FirstCouponDate®, ...
FirstCouponDate, "LastCouponDate”, LastCouponDate,"StartDate", StartDate)

Equity Derivatives
The toolbox can create portfolios containing the following set of equity derivatives:

+ Asian instrument

InstSet = instadd("Asian®, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
AvgType, AvgPrice, AvgDate)

* Barrier instrument

InstSet = instadd("Barrier”, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
BarrierType, Barrier, Rebate)

+  Compound instrument

InstSet = instadd("Compound®, UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, ...
COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

*  Convertible bond instrument
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
* Lookback instrument
InstSet = instadd("Lookback®, OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

+ Stock option instrument
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InstSet = instadd("OptStock", OptSpec, Strike, Settle, Maturity, AmericanOpt)

See Also

hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples

. “Creating Instruments or Properties” on page 1-19

. “Adding Instruments to an Existing Portfolio” on page 1-10

. “Instrument Construction and Portfolio Management” on page 1-18
More About

. “Supported Interest-Rate Instruments” on page 2-2

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41
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Adding Instruments to an Existing Porifolio

1-10

To use the instadd function to add additional instruments to an existing instrument
portfolio, provide the name of an existing portfolio as the first argument to the instadd
function.

Consider, for example, a portfolio containing two cap instruments only:

Strike [0.06; 0.07];
Settle = "08-Feb-2000";
Maturity = "15-Jan-2003";

Port_1 = instadd("Cap”, Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the same
settlement and maturity dates, but with different strikes. In general, the input
arguments describing an instrument can be either a scalar, or a number of instruments
(NumInst)-by-1 vector in which each element corresponds to an instrument. Using a
scalar assigns the same value to all instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set:

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal
1 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100
2 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and the same
settlement and maturity dates as the cap instruments.

CouponRate = 0.04;
Port_1 = instadd(Port_1, "Bond", CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set:

instdisp(Port_1)

Index Type Strike Settle Maturity CapReset Basis Principal

1 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

2 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate ... Face
3 Bond 0.04 08-Feb-2000 15-Jan-2003 2 0 1 NaN ... 100



Adding Instruments to an Existing Portfolio

See Also

hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples

. “Portfolio Creation” on page 1-7
. “Instrument Construction and Portfolio Management” on page 1-18
More About

. “Supported Interest-Rate Instruments” on page 2-2
. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41

1-11



1 Getting Started

Pricing a Portfolio Using the Black-Derman-Toy Model

1-12

This example illustrates how the Financial Instruments Toolbox™ is used to create a
Black-Derman-Toy (BDT) tree and price a portfolio of instruments using the BDT model.

Create the Interest Rate Term Structure

The structure RateSpec is an interest-rate term structure that defines the initial
forward-rate specification from which the tree rates are derived. Use the information of
annualized zero coupon rates in the table below to populate the RateSpec structure.

From To Rate

01 Jan 2005 01 Jan 2006 0.0275
01 Jan 2005 01 Jan 2007 0.0312
01 Jan 2005 01 Jan 2008 0.0363
01 Jan 2005 01 Jan 2009 0.0415
01 Jan 2005 01 Jan 2010 0.0458

StartDates = ["01 Jan 2005"];

EndDates = [F01 Jan 2006";
"01 Jan 2007";
"01 Jan 2008";
"01 Jan 2009°;
01 Jan 20107°];

ValuationDate = ["01 Jan 20057];
Rates = [0.0275; 0.0312; 0.0363; 0.0415; 0.0458];
Compounding = 1;

RateSpec = intenvset("Compounding”,Compounding, "StartDates”, StartDates,...
"EndDates”, EndDates, "Rates”, Rates, "ValuationDate", ValuationDa:

RateSpec = struct with fields:
FinObj: "RateSpec*
Compounding: 1
Disc: [5%x1 double]
Rates: [5%x1 double]
EndTimes: [5%x1 double]
StartTimes: [5x1 double]
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EndDates: [5%1 double]
StartDates: 732313
ValuationDate: 732313
Basis: O
EndMonthRule: 1

Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

Volatility
BDTVolSpec

[0.005; 0.0055; 0.006; 0.0065; 0.007];
bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = struct with fields:
FinObj: "BDTVolSpec*
ValuationDate: 732313
VolDates: [5x1 double]
VolCurve: [5x1 double]
VolInterpMethod: "linear”

Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This
structure defines the mapping between the observation times at each level of the tree and
the corresponding dates.

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec = struct with fields:
FinObj: "BDTTimeSpec*
ValuationDate: 732313
Maturity: [5x1 double]
Compounding: 1
Basis: O
EndMonthRule: 1

Create the BDT Tree

Use the previously computed values for RateSpec, VolSpec and TimeSpec to create the
BDT tree.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

1-13



1 Getting Started

BDTTree = struct with fields:
FinObj: "BDTFwdTree*
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3 4]
dObs: [732313 732678 733043 733408 733774]
TFwd: {[5x1 double] [4x1 double] [3%x1 double] [2x1 double] [4]1}
CFlowT: {[5%1 double] [4x1 double] [3x1 double] [2x1 double] [5]1}
FwdTree: {[1.0275] [1.0347 1.0351] [1.0460 1.0466 1.0472] [1.0560 1.0568 1.057

Observe the Interest Rate Tree

Visualize the interest-rate evolution along the tree by looking at the output structure
BDTTree. BDTTree returns an inverse discount tree, which you can convert into an
interest-rate tree with the cvtree function.

BDTTreeR = cvtree(BDTTree);

Look at the upper branch and lower branch paths of the tree:

%Rate at root node:
RateRoot = treepath(BDTTreeR.RateTree, [0])

RateRoot = 0.0275

%Rates along upper branch:
RatePathUp = treepath(BDTTreeR.RateTree, [1 1 1 1])

RatePathUp =

0.0275
0.0347
0.0460
0.0560
0.0612

%Rates along lower branch:
RatePathDown = treepath(BDTTreeR.RateTree, [2 2 2 2])

RatePathDown
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0.0275
0.0351
0.0472
0.0585
0.0653

You can also display a graphical representation of the tree to examine interactively

the rates on the nodes of the tree until maturity. The function treeviewer displays the

structure of the rate tree in the left pane. The tree visualization in the right pane is
blank, but by selecting Diagram and clicking on the nodes you can examine the rates

along the paths.

treeviewer(BDTTreeR)
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Create an Instrument Porifolio

Create a portfolio consisting of two bond instruments and a option on the 5% Bond.

% Bonds

CouponRate = [0.04;0.05];

Settle = "01 Jan 20057;

Maturity = ["01 Jan 20097;"01 Jan 20107°];

Period = 1;

% Option

OptSpec = {"call"};

Strike = 98;

ExerciseDates [F01 Jan 2010"];

AmericanOpt = 1;

InstSet
InstSet

instadd("Bond",CouponRate, Settle, Maturity, Period);
instadd(InstSet, "OptBond”, 2, OptSpec, Strike, ExerciseDates, AmericanOpt);

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDatx
1 Bond 0.04 01-Jan-2005 01-Jan-2009 1 0 1 NaN
2 Bond 0.05 01-Jan-2005 01-Jan-2010 1 0 1 NaN

Index Type UnderiInd OptSpec Strike ExerciseDates AmericanOpt
3 OptBond 2 call 98 01-Jan-2010 1
Price the Portfolio Using a BDT Tree

Calculate the price of each instrument in the instrument set.

Price = bdtprice(BDTTree, InstSet)

Price
99.6374

102.2460
4.2460

The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the Valuation Date of the interest-rate tree.
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In the Price vector, the first element, 99.6374, represents the price of the first instrument
(4% Bond); the second element, 102.2460, represents the price of the second instrument
(5% Bond), and 4.2460 represents the price of the Option.

See Also

hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples

. “Portfolio Creation” on page 1-7

. “Instrument Construction and Portfolio Management” on page 1-18
More About

. “Supported Interest-Rate Instruments” on page 2-2

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41
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Instrument Construction and Portfolio Management

You can create instruments and manage a collection of instruments as a portfolio.

In this section...

“Instrument Constructors” on page 1-18
“Creating Instruments or Properties” on page 1-19

“Searching or Subsetting a Portfolio” on page 1-21

Instrument Constructors

The toolbox provides constructors for the most common financial instruments. A
constructor is a function that builds a structure dedicated to a certain type of object; in
this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Instrument Constructor
Asian option instasian
Barrier option instbarrier
Bond instbond
Bond option instoptbnd
Arbitrary cash flow instcf
Compound option instcompound
Convertible bond instcbond
Fixed-rate note instfixed
Floating-rate note instfloat
Cap instcap

Floor instfloor
Lookback option instlookback
Stock option instoptstock
Swap instswap
Swaption instswaption
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Each instrument has parameters (fields) that describe the instrument. The toolbox
functions let you do the following:

+ Create an instrument or portfolio of instruments.
*  Enumerate stored instrument types and information fields.

*  Enumerate instrument field data.

+ Search and select instruments.

The instrument structure consists of various fields according to instrument type. A field
is an element of data associated with the instrument. For example, a bond instrument
contains the fields: CouponRate, Settle, Maturity. Additionally, each instrument has
a field that identifies the investment type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have the ability to
add additional parameters. These additional fields are ignored by the toolbox functions.
They may be used to attach additional information to each instrument, such as an
internal code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, in general,
means that the functions using the instrument set (such as intenvprice or hjymprice)
will use default values. At the time of pricing, an error occurs if any of the required fields
1s missing, such as Strike in a cap or CouponRate in a bond.

Creating Instruments or Properties

Use the instaddfield function to create a kind of instrument or to add new properties
to the instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three arguments:

- Type
+ FieldName
*+ Data

Type defines the type of the new instrument, for example, Future. FieldName names
the fields uniquely associated with the new type of instrument. Data contains the data
for the fields of the new instrument.

An optional fourth argument is ClassList. ClassList specifies the data types of the
contents of each unique field for the new instrument.
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Use either syntax to create a kind of instrument using instaddfield:
InstSet = instaddfield("FieldName®, FieldList, "Data", DatalList,...
"Type®, TypeString)

InstSet = instaddfield("FieldName®, FieldList, "FieldClass”, ...
ClassList, "Data" , DatalList, "Type®, TypeString)

To add new instruments to an existing set, use:

InstSetNew = instaddfield(InstSetOld, “FieldName®, FieldList,...
"Data”, DataList, "Type®", TypeString)

As an example, consider a futures contract with a delivery date of July 15, 2000, and a
quoted price of $104.40. Since Financial Instruments Toolbox software does not directly
support this instrument, you must create it using the function instaddfield. Use these
parameters to create instruments:

* Type: Future

* Field names: Delivery and Price

* Data: Delivery is July 15, 2000, and price is $104.40.

Enter the data into MATLAB software:
Type = "Future-®;

FieldName = {"Delivery”, "Price"};
Data = {"Jul-15-2000", 104.4};

Finally, create the portfolio with a single instrument:

Port = instaddfield("Type®, Type, “FieldName®, FieldName,...
"Data”, Data);

Now use the function Instdisp to examine the resulting single-instrument portfolio:

instdisp(Port)
Index Type Delivery Price
1 Future Jul-15-2000 104.4

Because your portfolio POrt has the same structure as those created using the function
instadd, you can combine portfolios created using instadd with portfolios created
using instaddfield. For example, you can now add two cap instruments to Port with
instadd.

Strike
Settle

[0.06; 0.07];
*08-Feb-2000" ;
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Maturity = "15-Jan-2003";

Port = instadd(Port, "Cap”, Strike, Settle, Maturity);

View the resulting portfolio using instdisp.

instdisp(Port)

Index Type Delivery Price

1 Future 15-Jul-2000 104.4

Index Type Strike Settle Maturity CapReset Basis Principal
2 Cap 0.06 08-Feb-2000 15-Jan-2003 1 0 100

3 Cap 0.07 08-Feb-2000 15-Jan-2003 1 0 100

Searching or Subsetting a Porifolio
Financial Instruments Toolbox provides functions that enable you to:

*  Find specific instruments within a portfolio.

*  Create a subset portfolio consisting of instruments selected from a larger portfolio.

The instfind function finds instruments with a specific parameter value; it returns
an instrument index (position) in a large instrument set. The instselect function,
on the other hand, subsets a large instrument set into a portfolio of instruments with
designated parameter values; it returns an instrument set (portfolio) rather than an
index.

instfind

The general syntax for instfind is

IndexMatch = instfind(InstSet, "FieldName®", FieldList, "Data”, ...
DataList, "Index", IndexSet, "Type", TypelList)

InstSet is the instrument set to search. Within InstSet instruments categorized by
type, each type can have different data fields. The stored data field is a row vector or
character vector for each instrument.

The FieldList, DatalList, and TypelList arguments indicate values to search for in
the FieldName, Data, and Type data fields of the instrument set. FieldList is a cell
array of field name(s) specific to the instruments. DatalList is a cell array or matrix of
acceptable values for the parameter(s) specified in FieldList. FieldName and Data
(consequently, FieldList and DatalList) parameters must appear together or not at
all.
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IndexSet is a vector of integer index(es) designating positions of instruments in

the instrument set to check for matches; the default is all indices available in the
instrument set. TypeList is a character vector or cell array of character vectors
restricting instruments to match one of the TypeList types; the default is all types in
the instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria.
Instruments are returned in IndexMatch if all the FieldName, Data, Index, and Type
conditions are met. An instrument meets an individual field condition if the stored
FieldName data matches any of the rows listed in the DatalList for that FieldName.

instfind Examples
The examples use the provided MAT-file deriv.mat.

The MAT-file contains an instrument set, HIMInstSet, that contains eight instruments
of seven types.

load deriv.mat

instdisp(HIMInstSet)

Index Type CouponRate Settle Maturity Period Basis ... Name Quantity

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

Index Type UnderiInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity

3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50

Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity

6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Cap 30

Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity

7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN] 6%/20BP Swap 10

Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ...
instfind(HIMInstSet, "FieldName®, "Maturity®, "Data”, "01-Jan-2003")

Mat2003 =
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(¢ NN o

Find all cap and floor instruments with a maturity date of January 01, 2004.
CapFloor = instfind(HIMInstSet, ...

"FieldName®, "Maturity”,"Data”, "01-Jan-2004", "Type",...
{"Cap”;"Floor"})

CapFloor =

6
7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HIMInstSet, "FieldName”®, ...
"Quantity”, "Data”,{"50";"-50"})

Pos50 =

2
3

instselect

The syntax for instselect is the same syntax as for instfind. instselect returns a
full portfolio instead of indexes into the original portfolio. Compare the values returned
by both functions by calling them equivalently.

Previously you used instfind to find all instruments in HIMInstSet with a maturity
date of January 01, 2003.

Mat2003 = ...
instfind(HIMInstSet, "FieldName®, "Maturity", "Data”, "01-Jan-2003")

Mat2003 =

(el ¢) NN o
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Now use the same instrument set as a starting point, but execute the instselect
function instead, to produce a new instrument set matching the identical search criteria.

Select2003 = ...
instselect(HIMInstSet, "FieldName™, "Maturity”,"Data”, . ..
"01-Jan-2003")

instdisp(Select2003)

Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate St
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN NaN NaN NaN Nal
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity

2 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN NaN 4% Fixed 80

Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity

3 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8

Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity

4 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN]  6%/20BP Swap 10

instselect Examples

These examples use the portfolio Examplelnst provided with the MAT-file
InstSetExamples.mat.

load InstSetExamples.mat
instdisp(Examplelnst)

Index Type Strike Price Opt Contracts

1 Option 95 12.2 Call 0

2 Option 100 9.2 Call 0

3 Option 105 6.8 Call 1000

Index Type Delivery F Contracts
4 Futures 01-Jul-1999 104.4 -1000

Index Type Strike Price Opt Contracts

5 Option 105 7.4 Put -1000

6 Option 95 2.9 Put 0
Index Type Price Maturity Contracts
7 TBill 99 01-Jul-1999 6

The instrument set contains three instrument types: Option, Futures, and TBill. Use
instselect to make a new instrument set containing only options struck at 95. In other
words, select all instruments containing the field Strike and with the data value for
that field equal to 95.
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InstSet = instselect(Examplelnst, "FieldName®,"Strike", "Data”,95);

instdisp(InstSet)

Index Type Strike Price Opt Contracts
1 Option 95 12.2 Call 0
2 Option 95 2.9 Put 0

You can use all the various forms of instselect and instfind to locate specific
instruments within this instrument set.

See Also

hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples

. “Portfolio Creation” on page 1-7

. “Hedging Functions” on page 4-3

. “Hedging with hedgeopt” on page 4-4

. “Self-Financing Hedges with hedgeslf” on page 4-11

. “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-12
. “Pricing and Hedging a Portfolio Using the Black-Karasinski Model”

. “Specifying Constraints with ConSet” on page 4-31

. “Portfolio Rebalancing” on page 4-33

. “Hedging with Constrained Portfolios” on page 4-36

More About
. “Hedging” on page 4-2

. “Supported Interest-Rate Instruments” on page 2-2
. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41
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“Supported Interest-Rate Instruments” on page 2-2
“Work with Negative Interest Rates” on page 2-21

“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page
2-25

“Calibrate the SABR Model ” on page 2-34

“Price a Swaption Using the SABR Model” on page 2-40

“Overview of Interest-Rate Tree Models” on page 2-48

“Understanding the Interest-Rate Term Structure” on page 2-53
“Interest-Rate Term Conversions” on page 2-60

“Modeling the Interest-Rate Term Structure” on page 2-65

“Pricing Using Interest-Rate Term Structure” on page 2-70
“Understanding Interest-Rate Tree Models” on page 2-77

“Pricing Using Interest-Rate Tree Models” on page 2-97

“Computing Instrument Sensitivities” on page 2-106

“Calibrating Hull-White Model Using Market Data” on page 2-109
“Interest-Rate Derivatives Using Closed-Form Solutions” on page 2-119
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-121
“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-139

“Graphical Representation of Trees” on page 2-155



2 Interest-Rate Derivatives

Supported Interest-Rate Instruments

In this section...

“Bond” on page 2-2

“Convertible Bond” on page 2-3

“Stepped Coupon Bonds” on page 2-5

“Sinking Fund Bonds” on page 2-5

“Bonds with an Amortization Schedule” on page 2-6

“Bond Options” on page 2-6

“Bond with Embedded Options” on page 2-7

“Stepped Coupon Bonds with Calls and Puts” on page 2-8
“Sinking Fund Bonds with an Embedded Option” on page 2-9
“Fixed-Rate Note” on page 2-9

“Floating-Rate Note” on page 2-10

“Floating-Rate Note with an Amortization Schedule” on page 2-10
“Floating-Rate Note with Caps, Collars, and Floors” on page 2-11
“Floating-Rate Note with Options” on page 2-11
“Floating-Rate Note with Embedded Options” on page 2-12
“Cap” on page 2-13

“Floor” on page 2-13

“Range Note” on page 2-14

“Swap” on page 2-15

“Swap with an Amortization Schedule” on page 2-15
“Forward Swap” on page 2-16

“Swaption” on page 2-16

“Bond Futures” on page 2-17

Bond

A bond 1s a long-term debt security with a preset interest-rate and maturity. At
maturity, you must pay the principal and interest.
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The price or value of a bond is determined by discounting the expected cash flows of
the bond to the present, using the appropriate discount rate. The following equation
represents the relationship of the expected cash flows and discount rate:

r

—2t
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2 r r 2t
9 1+—
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where:

By is the bond value.

C is the annual coupon payment.

F'is the face value of the bond.

r is the required return on the bond.

t is the number of years remaining until maturity.

Financial Instruments Toolbox supports the following for pricing and specifying a bond.

Function Purpose

bondbybdt Price a bond using a BDT interest-rate tree.
bondbyhw Price a bond using an HW interest-rate tree.
bondbybk Price a bond using a BK interest-rate tree.
bondbyhjm Price a bond using an HJM interest-rate tree.
bondbyzero Price a bond using a set of zero curves.
instbond Construct a bond instrument.

Convertible Bond

A convertible bond is a financial instrument that combines equity and debt features. It
is a bond with the embedded option to turn it into a fixed number of shares. The holder
of a convertible bond has the right, but not the obligation, to exchange the convertible

2-3



2

Interest-Rate Derivatives

2-4

security for a predetermined number of equity shares at a preset price. The debt
component is derived from the coupon payments and the principal. The equity component
is provided by the conversion feature.

Convertible bonds have several defining features:

Coupon — The coupon in convertible bonds are typically lower than coupons in vanilla
bonds since investors are willing to take the lower coupon for the opportunity to
participate in the company’s stock via the conversion.

Maturity — Most convertible bonds are issued with long-stated maturities. Short-
term maturity convertible bonds usually do not have call or put provisions.

Conversion ratio — Conversion ratio is the number of shares that the holder of the

convertible bond receives from exercising the call option of the convertible bond:
Conversion ratio = par value convertible bond/conversion price
of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares
of stock. This also implies a conversion price of $40 (1000/25). This, $40, would be the
price at which the owner would buy the shares. This can be expressed as a ratio or as
the conversion price and is specified in the contract along with other provisions.

Option type:

+ Callable Convertible: a convertible bond that is callable by the issuer. The issuer
of the bond forces conversion, removing the advantage that conversion is at the
discretion of the bondholder. Upon call, the bondholder can either convert the bond
or redeem at the call price. This option enables the issuer to control the price of the
convertible bond and if necessary refinance the debt with a new cheaper one.

+ Puttable Convertible: a convertible bond with a put feature that allows the
bondholder to sell back the bond at a premium on a specific date. This option
protects the holder against rising interest rates by reducing the year to maturity.

Function Purpose

cbondbycrr Price convertible bonds using a CRR binomial tree with the

Tsiveriotis and Fernandes model.

cbondbyeqp Price convertible bonds using an EQP binomial tree with the

Tsiveriotis and Fernandes model.

cbondbyitt Price convertible bonds using an implied trinomial tree with

the Tsiveriotis and Fernandes model.
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Function Purpose

cbondbystt Price convertible bonds using a standard trinomial tree with
the Tsiveriotis and Fernandes model.

instcbond Construct a cbond instrument for a convertible bond.

Stepped Coupon Bonds

A step-up and step-down bond is a debt security with a predetermined coupon structure
over time. With these instruments, coupons increase (step up) or decrease (step down)
at specific times during the life of the bond. For more information on options features
(call and puts), see “Stepped Coupon Bonds with Calls and Puts” on page 2-8. The
following functions have a modified CouponRate argument to support a new variable
coupon schedule allowing pricing of stepped coupon bonds.

Function Purpose

bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instdisp Display instruments stored in a variable.

Sinking Fund Bonds

A sinking fund bond 1is a coupon bond with a sinking fund provision. This provision
obligates the issuer to amortize portions of the principal before maturity, affecting bond
prices since the time of the principal repayment changes. This means that investors
receive the coupon and a portion of the principal paid back over time. These types of
bonds reduce credit risk, since it lowers the probability of investors not receiving their
principal payment at maturity. For more information on options support for sinking
fund bonds, see “Sinking Fund Bonds with an Embedded Option” on page 2-9. The
following functions have a modified Face argument to support a variable face schedule
for pricing bonds with a sinking provisions.
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Function Purpose

bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instdisp Display instruments stored in a variable.

Bonds with an Amortization Schedule

A bond with an amortization schedule repays part of the principal (face value) along with
the coupon payments. An amortizing bond is a special case of a sinking fund bond when
there is no market purchase option and no call provision. The following functions have a
modified Face argument to support an amortization schedule.

Function Purpose

bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.

Bond Options

Financial Instruments Toolbox supports three types of put and call options on bonds:

* American option: An option that you exercise any time until its expiration date.
*  European option: An option that you exercise only on its expiration date.

*  Bermuda option: A Bermuda option resembles a hybrid of American and European
options. You can exercise it on predetermined dates only, usually monthly.
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Financial Instruments Toolbox supports the following for pricing and specifying a bond
option.

Function Purpose

optbndbybdt Price a bond option price using a BDT interest-rate
tree.

optbndbyhw Price a bond option price using an HW interest-rate
tree.

optbndbybk Price a bond option price using a BK interest-rate tree.

optbndbyhjm Price a bond option price using an HJM interest-rate
tree.

instoptbnd Construct a bond option instrument.

Bond with Embedded Options

A bond with embedded options allows the issuer to buy back or redeem the bond at a
predetermined price at specified future dates. Financial Instruments Toolbox supports
American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:
For a callable bond: PriceCallableBond = BondPrice - BondCallOption

For a puttable bond: PricePuttableBond = PriceBond + PricePutOption

In addition, Option Adjusted Spread (OAS) is a useful way to value and compare
securities with embedded options, like callable or puttable bonds. For more information
on OAS, see “OAS for Callable and Puttable Bonds” on page 2-74.

Financial Instruments Toolbox supports the following for pricing and specifying a bond
with embedded options.

Function Purpose

optembndbybdt Price a bond with embedded options using a BDT
interest-rate tree.

optembndbyhw Price a bond with embedded options using an HW
interest rate tree.
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Function Purpose

optembndbybk Price a bond with embedded options using a BK
interest-rate tree.

optembndbyhjm Price a bond with embedded options using an HJIM
interest-rate tree.

instoptembnd Construct a bond-with-embedded-options instrument.

oasbybdt Determine an option adjusted spread using Black-
Derman-Toy model.

oasbybk Determine an option adjusted spread using Black-
Karasinski model.

oasbyhjm Determine an option adjusted spread using Heath-
Jarrow-Morton model.

oasbyhw Determine an option adjusted spread using Hull-White
model.

agencyoas Compute the OAS of the callable bond using the
Agency OAS model.

agencyprice Price the callable bond OAS using the Agency OAS

model.

Stepped Coupon Bonds with Calls and Puts

A step-up and step-down bond is a debt security with a predetermined coupon structure
over time. For more information on stepped coupon bonds, see “Stepped Coupon Bonds”
on page 2-5. Stepped coupon bonds can have options features (call and puts). The
following functions have a modified CouponRate argument to support a new variable
coupon schedule allowing pricing stepped coupon bonds with callable and puttable

features:

Function Purpose

optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
optembndbyhw Price bonds with embedded options using an HW model tree.
instbond Construct a bond instrument.
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Function Purpose

instoptbnd Construct a bond option instrument.

instoptembnd Construct a bond with an embedded option instrument.
instdisp Display instruments stored in a variable.

Sinking Fund Bonds with an Embedded Option

A sinking fund bond is a coupon bond with a sinking fund provision. For more
information on sinking fund bonds, see “Sinking Fund Bonds” on page 2-5. The

sinking fund bond can have a sinking fund option provision allowing the issuer to retire
the sinking fund obligation either by purchasing the bonds to be redeemed from the
market or by calling the bond via a sinking fund call, whichever is cheaper.

If interest rates are high, then the issuer buys back the required amount of bonds

from the market since bonds are cheap. But if interest rates are low (bond prices are
high), then most likely the issuer buys the bonds at the call price. Unlike a call feature,
however, if a bond has a sinking fund option provision, it is an obligation, not an option,
for the issuer to buy back the increments of the issue as stated. Because of this, a sinking
fund bond trades at a lower price than a nonsinking fund bond. The following functions

have a modified Face argument to support a variable face schedule for pricing bonds
with a sinking fund option provision.

Function Purpose

optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
optembndbyhw Price bonds with embedded options using an HW model tree.
instbond Construct a bond instrument.

instoptbnd Construct a bond option instrument.

instdisp Display instruments stored in a variable.

Fixed-Rate Note

A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by
which the interest must be paid. The principal may or may not be paid at maturity. In
Financial Instruments Toolbox, the principal is always paid at maturity.
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Function Purpose

fixedbybdt Price a fixed-rate note using a BDT interest-rate tree.
fixedbyhw Price a fixed-rate note using an HW interest-rate tree.
Tixedbybk Price a fixed-rate note using a BK interest-rate tree.
fixedbyhjm Price a fixed-rate note using an HJM interest-rate tree.
fixedbyzero Price a fixed-rate note using a set of zero curves.
instfixed Construct a fixed-rate instrument.

Floating-Rate Note

A floating-rate note is a security like a bond, but the interest rate of the note is reset
periodically, relative to a reference index rate, to reflect fluctuations in market interest

rates.

Function Purpose

floatbybdt Price a floating-rate note using a BDT interest-rate
tree.

floatbyhw Price a floating-rate note using an HW interest-rate
tree.

floatbybk Price a floating-rate note using a BK interest-rate tree.

Tloatbyhjm Price a floating-rate note using an HJM interest-rate
tree.

floatbyzero Price a floating-rate note using a set of zero curves.

instfloat Construct a floating-rate note instrument.

Floating-Rate Note with an Amortization Schedule

A floating-rate note with an amortization schedule repays part of the principal (face
value) along with the coupon payments. The following functions have a Principal
argument to support an amortization schedule.

Function

Purpose

floatbyzero

Price floating-rate note from set of zero curves.
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Function Purpose

floatbybdt Price floating-rate note from Black-Derman-Toy interest-rate
tree.

floatbyhjm Price floating-rate note from Heath-Jarrow-Morton interest-
rate tree.

Tloatbyhw Price floating-rate note from Hull-White interest-rate tree.

floatbybk Price floating-rate note from Black-Karasinski interest-rate
tree.

Floating-Rate Note with Caps, Collars, and Floors

A floating-rate note with caps, collars, and floors. This type of instrument can carry
restrictions on the maximum (cap) or minimum (floor) coupon rate paid. A cap is

an unattractive feature for an investor, since they constrain the coupon rates from
increasing. A floor is an attractive feature, since it allows investors to get a minimum
coupon rate when market rates decrease below a certain level. Also, a floating-rate note
can have a collar which is a combination of a cap and a floor together. The following
functions have a CapRate and FloorRate argument to support a capped, collared, or
floored floating-rate note.

Function Purpose

floatbybdt Price a capped floating-rate note from a Black-Derman-Toy
interest-rate tree.

floatbyhjm Price a capped floating-rate note from a Heath-Jarrow-Morton
interest-rate tree.

floatbyhw Price a capped floating-rate note from a Hull-White interest-
rate tree.

floatbybk Price a capped floating-rate note from a Black-
Karasinskiinterest-rate tree.

instfloat Create a capped floating-rate note instrument.

instadd Add a capped floating-rate note instrument to a portfolio.

Floating-Rate Note with Options

Financial Instruments Toolbox supports three types of put and call options on floating
rate-notes:
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* American option — An option that you exercise any time until its expiration date.

*  European option — An option that you exercise only on its expiration date.

+  Bermuda option — A Bermuda option resembles a hybrid of American and European
options; you can only exercise it on predetermined dates, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a

floating rate-note option:

Function Purpose

optfloatbybdt Price an option for floating-rate note using a Black-Derman-
Toy interest-rate tree.

optfloatbyhjm Price an option for floating-rate note using a Heath-Jarrow-
Morton interest-rate tree.

optfloatbyhw Price an option for floating-rate note using a Hull-White
interest-rate tree.

optfloatbybk Price an option for floating-rate note using a Black-Karasinski
interest-rate tree.

instoptfloat Define the option instrument for floating-rate note.

Floating-Rate Note with Embedded Options

A floating-rate note with an embedded option enables floating-rate notes to have early
redemption features. An FRN with an embedded option gives investors or issuers the
option to retire the outstanding principal prior to maturity. An embedded call option
gives the right to retire the note prior to the maturity date (callable floater), and an
embedded put option gives the right to sell the note back at a specific price (puttable

floater).

Financial Instruments Toolbox supports the following for pricing and specifying a
floating rate-note with an embedded option:

Function Purpose

optemfloatbybdt Price an embedded option for floating-rate note using a Black-
Derman-Toy interest-rate tree.

optemfloatbybk Price an embedded option for floating-rate note using a Black-
Karasinski interest-rate tree.
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Function Purpose

optemfloatbyhjm Price an embedded option for floating-rate note using a Heath-
Jarrow-Morton interest-rate tree.

optemfloatbyhw Price an embedded option for floating-rate note using a Hull-
White interest-rate tree.

instoptemfloat Define the floating-rate note with embedded option
instrument.

Cap

A cap is a contract that includes a guarantee that sets the maximum interest rate to be
paid by the holder, based on an otherwise floating interest rate. The payoff for a cap is:

max(CurrentRate — CapRate,0)

Function Purpose

capbybdt Price a cap instrument using a BDT interest-rate tree.

capbyhw Price a cap instrument using an HW interest-rate tree.

capbybk Price a cap instrument using a BK interest-rate tree.

capbyhjm Price a cap instrument using an HJM interest-rate
tree.

capbyblk Price a cap instrument using the Black option pricing
model.

capbynormal Price a cap instrument with negative rates using the
Normal (Bachelier) option pricing model.

capvolstrip Strip caplet volatilities from flat cap volatilities.

instcap Construct a cap instrument.

Floor

A floor is a contract that includes a guarantee setting the minimum interest rate to be
received by the holder, based on an otherwise floating interest rate. The payoff for a floor

1S:

max(FloorRate — CurrentRate,0)
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Function Purpose

floorbybdt Price a floor instrument using a BDT interest-rate
tree.

floorbyhw Price a floor instrument using an HW interest-rate
tree.

Tloorbybk Price a floor instrument using a BK interest-rate tree.

floorbyhjm Price a floor instrument using an HJM interest-rate
tree.

floorbyblk Price a floor instrument using the Black option pricing
model.

floorbynormal Price a floor instrument with negative rates using the
Normal (Bachelier) option pricing model.

floorvolstrip Strip floorlet volatilities from flat floor volatilities.

instfloor Construct a floor instrument.

Range Note

A range note is a structured (market-linked) security whose coupon-rate is equal to the
reference rate as long as the reference rate is within a certain range. If the reference
rate is outside of the range, the coupon-rate is 0 for that period. This type of instrument
entitles the holder to cash flows that depend on the level of some reference interest-

rate that is floored to be positive and gives the holder of the note direct exposure to the
reference rate. This type of instrument is useful for cases where you believe that interest
rates will stay within a certain range. In return for the drawback that no interest is paid
for the time the range is left, a range note offers higher coupon rates than comparable
standard products, like vanilla floating notes.

Function Purpose

instrangefloat Create a range note instrument.
rangefloatbybdt Price range floating note using a BDT tree.
rangefloatbybk Price range floating note using a BK tree.
rangefloatbyhjm Price range floating note using an HJM tree.
rangefloatbyhw Price range floating note using an HW tree.
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Swap

A swap is contract between two parties obligating the parties to exchange future cash
flows. This toolbox version handles only the vanilla swap, which is composed of a
floating-rate leg and a fixed-rate leg.

Function Purpose

swapbybdt Price a swap instrument using a BDT interest-rate
tree.

swapbyhw Price a swap instrument using an HW interest-rate
tree.

swapbybk Price a swap instrument using a BK interest-rate tree.

swapbyhjm Price a swap instrument using an HJM interest-rate
tree.

swapbyzero Price a swap instrument using a set of zero curves and
price cross currency swaps.

instswap Construct a swap instrument.

Swap with an Amortization Schedule

A swap with an amortization schedule repays part of the principal (face value) along with
the coupon payments. A swap with an amortization schedule is used to manage interest
rate risk and serve as a cash flow management tool. For this particular type of swap, the
notional amount decreases over time. This means that interest payments decrease not
only on the floating leg but also on the fixed leg. The following swap functions have a
Principal argument to support an amortization schedule.

Function Purpose

swapbyzero Price swap instrument from set of zero curves.

swapbybdt Price swap instrument from Black-Derman-Toy interest-rate
tree.

swapbyhjm Price swap instrument from Heath-Jarrow-Morton interest-
rate tree.

swapbyhw Price swap instrument from Hull-White interest-rate tree.

swapbybk Price swap instrument from Black-Karasinski interest-rate
tree.
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Function

Purpose

instswap

Construct swap instrument.

Forward Swap

In a forward interest-rate swap, a fixed interest-rate loan is exchanged for a floating
interest-rate loan at a future specified date. The following functions have a StartDate
argument to support the future date for the forward swap.

Function Purpose

swapbyzero Price a forward swap from a zero curve.

swapbybdt Price a forward swap from a Black-Derman-Toy interest-rate
tree.

swapbyhjm Price a forward swap from a Heath-Jarrow-Morton interest-
rate tree.

swapbyhw Price a forward swap from a Hull-White interest-rate tree.

swapbybk Price a forward swap from a Black-Karasinskiinterest-rate
tree.

instswap Create a forward swap instrument.

instadd Add a capped floating-rate note instrument to a portfolio.

Swaption

A swaption is an option to enter into an interest-rate swap contract. A call swaption
allows the option buyer to enter into an interest-rate swap where the buyer of the option
pays the fixed-rate and receives the floating-rate. A put swaption allows the option buyer
to enter into an interest-rate swap where the buyer of the option receives the fixed-rate
and pays the floating-rate.

Function Purpose

swaptionbybdt Price a swaption instrument using a BDT interest-rate
tree.

swaptionbyhw Price a swaption instrument using an HW interest-rate
tree.




Supported Interest-Rate Instruments

Function Purpose

swaptionbybk Price a swaption instrument using a BK interest-rate
tree.

swaptionbyhjm Price a swaption instrument using an HJM interest-
rate tree.

swaptionbyblk Price swaptions using the Black model with a forward
on a swap.

swaptionbynormal Price swaptions for negative rates using the Normal
(Bachelier) model with a forward on a swap.

instswaption Construct a swaption instrument.

Use swaptionbyblk to price a swaption using the Black model. The Black model is
standard model used in the swaption market when pricing European swaptions. This
type of model is widely used by when speed is important to quickly obtain a price at
settlement date, even if the price is less accurate than other swaption pricing models
based on interest-rate tree models.

Bond Futures

Bond futures are futures contracts where the commodity for delivery is a government
bond. There are established global markets for government bond futures. Bond futures
provide a liquid alternative for managing interest-rate risk.

In the U.S. market, the Chicago Mercantile Exchange (CME) offers futures on Treasury
bonds and notes with maturities of 2, 5, 10, and 30 years. Typically, the following bond
future contracts from the CME have maturities of 3, 6, 9, and 12 months:

* 30-year U.S. Treasury bond

* 10-year U.S. Treasury bond

* b5-year U.S. Treasury bond

+ 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long
position in one of many possible existing Treasury bonds. For example, in a 30-year
Treasury bond future, the short position must deliver a Treasury bond with at least 15
years to maturity. Because these bonds have different values, the bond future contract
is standardized by computing a conversion factor. The conversion factor normalizes the
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price of a bond to a theoretical bond with a coupon of 6%. The price of a bond future
contract is represented as:

InvoicePrice = FutPricex CF + Al

where:

FutPrice is the price of the bond future.

CF is the conversion factor for a bond to deliver in a futures contract.
Al is the accrued interest.

The short position in a futures contract has the option of which bond to deliver and, in
the U.S. bond market, when in the delivery month to deliver the bond. The short position
typically chooses to deliver the bond known as the Cheapest to Deliver (CTD). The CTD
bond most often delivers on the last delivery day of the month.

Financial Instruments Toolbox supports the following bond futures:

+ U.S. Treasury bonds and notes
*  German Bobl, Bund, Buxl, and Schatz
+ UK gilts

+ Japanese government bonds (JGBs)

The functions supporting all bond futures are:

Function Purpose

convfactor Calculates bond conversion factors for U.S. Treasury bonds,
German Bobl, Bund, Buxl, and Schatz, U.K. gilts, and JGBs.

bndfutprice Prices bond future given repo rates.

bndfutimprepo Calculates implied repo rates for a bond future given price.

The functions supporting U.S. Treasury bond futures are:

Function Purpose

tfutbyprice Calculates future prices of Treasury bonds given the spot price.
tfutbyyield Calculates future prices of Treasury bonds given current yield.
tfutimprepo Calculates implied repo rates for the Treasury bond future

given price.

2-18



Supported Interest-Rate Instruments

Function Purpose
tfutpricebyrepo Calculates Treasury bond futures price given the implied repo
rates.

tfutyieldbyrepo Calculates Treasury bond futures yield given the implied repo
rates.

For more information on bond futures, see “Bond Futures” on page 7-10.

See Also

agencyoas | agencyprice | bdtprice | bdtsens | bdttimespec | bdttree

| bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec |
blackvolbyrebonato | blackvolbysabr | bndfutimprepo | bndfutprice |
bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt |
capbybk | capbyblk | capbyhjm | capbyhw | capbylg2f | cfbybdt | cfbybk

| cFbyhjm | cfbyhw | cfbyzero | convfactor | fixedbybdt | fixedbybk

| Fixedbyhjm | Fixedbyhw | Fixedbyzero | floatbybdt | floatbybk |
Ffloatbyhjm | floatbyhw | floatbyzero | floatdiscmargin | Floatmargin

| floorbybdt | Floorbybk | Floorbyblk | floorbyhjm | floorbyhw |
Ffloorbylg2f | hjmprice | hjmsens | hymtimespec | hjmtree | hymvolspec

| hwcalbycap | hwcalbycap | hwcalbyfloor | hwcalbyfloor | hwprice |
hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf

| instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
optsensbysabr | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm
rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero
| swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm |
swaptionbyhw | swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo |
tfutpricebyrepo | tfutyieldbyrepo

Related Examples
“Overview of Interest-Rate Tree Models” on page 2-48

“Pricing Using Interest-Rate Term Structure” on page 2-70
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. “Graphical Representation of Trees” on page 2-155

. “Pricing Using Interest-Rate Tree Models” on page 2-97

. “Understanding Interest-Rate Tree Models” on page 2-77

. “Understanding the Interest-Rate Term Structure” on page 2-53

More About

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41



Work with Negative Interest Rates

Work with Negative Interest Rates

In this section...
“Interest-Rate Modeling Options for Negative Rates” on page 2-21
“Modeling Negative Rates” on page 2-21

Interest-Rate Modeling Options for Negative Rates

Financial Instruments Toolbox computes prices for caps, floors, and swaptions when
modeling for negative interest-rates using the following:

Support the Normal volatility model (Bachelier model) for interest-rate options to handle
negative rates:

swaptionbynormal

capbynormal

floorbynormal
The following functions provide an optional Shift argument to support the shifted Black
model and the shifted SABR model for interest-rate options to handle negative rates:

blackvolbysabr (Shifted SABR)

optsensbysabr (Shifted SABR)

swaptionbyblk (Shifted Black)

capbyblk (Shifted Black)

floorbyblk (Shifted Black)

capvolstrip (Shifted Black)

floorvolstrip (Shifted Black)

Modeling Negative Rates

The original authors of the SABR model provided a closed form approximation of the
implied Black volatility in terms of the SABR model parameters (known as “Hagan’s
formula”), so that the option price could be computed by inserting the computed SABR
Black volatility into the Black formula:
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Call(K,T) = Black,,;;(F,K,r,T,cp,..(,B,p,v,F,K,T))

However, these methods started to break down with the introduction of negative
interest rates, due to the assumption of the Black model that the underlying rates are
lognormally distributed (and therefore cannot be negative).

In addition, even when the underlying rate is positive, the closed form approximation of
the SABR implied Black volatility (Hagan et al., 2002) is known to become increasingly
Inaccurate as the strike approaches zero. Even without crossing the zero strike boundary,
the implied probability density of the underlying rate at option expiry can become
negative at low positive strikes, although probability densities clearly should not be
negative:

SABR Probability Density
0.025 T T

0.02

0.015

0.01

0.005

-0.005

0.0

-0.015 T

-0.02 T

-0.025
o] 0.005 0.01 0015 0.02 0025

Strike

Options with negative strikes cannot be represented by Black volatilities. To work
around this problem, the market started to quote the cap, floor, and swaption prices also
in terms of either Normal volatilities or Shifted Black volatilities. Instead of the Black
model, both types of volatilities come from alternative models that allow negative rates.



Work with Negative Interest Rates

Normal Model

The Normal volatilities are associated with the Normal model (also known as the
Bachelier model):

dF = OnormadW

where the underlying rates are assumed to be normally distributed. Unlike in a
lognormal model (where rates have a lower bound), the rates in the Normal model can be
both infinitely positive and infinitely negative.

Shifted Black

The Shifted Black volatilities are associated with the Shifted Black model (also known as
“Displaced Diffusion” or “Shifted Lognormal” model):

dF = Gspifteq piack(F + Shift)dW

The Shifted Black model is essentially the same as the Black model, except that it
models the movements of (F + Shift) as the underlying asset, instead of F (where F'is the
forward swap rate in the case of swaptions, and the forward rate in the case of caplets
and floorlets). So, the Shifted Black model allows negative rates, with a fixed negative
lower bound defined by the amount of shift, that is, the zero lower bound of the Black
model has been shifted.

Shifted SABR
The introduction of negative interest rates also called for an update in the method for

interpolating the volatilities quoted in the market. The following shows the connections
between the volatilities and the SABR models:
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(Price quoting) (Price quoting)

Black Black vol. approx SAB"‘M Normal vol. approx. _
4 —'UTOL
=0)

Black vol. approx. Normal vol. approx.
(p=0) (Inter / Extra-polation) (p=0)

: Shifted Black vol. approx.| Shifted SABR
Shifted Black [#--------------omoooomoooo Stoch. Vol.

{Price guoting) <+— : Positive rates only

(Inter / Extra-polation) «+---- : Negative or positive rates

Does not allow negative rates

:l Allows negative rates

As shown, the Black and Normal volatility approximations allow you to use the SABR
model with the Black and Normal model option pricing formulas. However, although the
Normal model itself allows negative rates and the SABR model has an implied Normal
volatility approximation, the underlying dynamics of the SABR model do not allow
negative rates, unless B = 0. In the Shifted SABR model, the Shifted Black volatility
approximation can be used to allow negative rates with a fixed negative lower bound
defined by the amount of shift

See Also

capbyblk | capbynormal | floorbyblk | floorbynormal | swaptionbyblk |
swaptionbynormal

Related Examples
. “Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page

2-25
More About
. “Supported Interest-Rate Instruments” on page 2-2
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Price Swaptions with Negative Strikes Using the Shifted SABR
Model

This example shows how to price swaptions with negative strikes by using the Shifted
SABR model. The market Shifted Black volatilities are used to calibrate the Shifted
SABR model parameters. The calibrated Shifted SABR model is then used to compute
the Shifted Black volatilities for negative strikes.

The swaptions with negative strikes are then priced using the computed Shifted Black
volatilities and the swaptionbyblk function with the *Shift" parameter set to

the prespecified shift. Similarly, Shifted SABR Greeks can be computed by using the
optsensbysabr function by setting the "Shift" parameter. Finally, from the swaption
prices, the probability density of the underlying asset is computed to show that the
swaption prices imply positive probability densities for some negative strikes.

Load the market data.

First, load the market interest rates and swaption volatility data. The market swaption
volatilities are quoted in terms of Shifted Black volatilities with a 0.8 percent shift.

Define RateSpec.

ValuationDate = "5-Apr-2016-;
EndDates = datemnth(ValuationDate,[1 2 3 6 9 12*[1 2 3 456 7 8 9 10 12]1D";
ZeroRates = [-0.34 -0.29 -0.25 -0.13 -0.07 -0.02 0.010 0.025 ...

0.031 0.040 0.052 0.090 0.190 0.290 0.410 0.520]"/100;
Compounding = 1;
RateSpec = intenvset("ValuationDate”,ValuationDate, "StartDates”,ValuationDate,
"EndDates” ,EndDates, "Rates” ,ZeroRates, "Compounding”,Compounding)

RateSpec =
struct with fields:

FinObj: "RateSpec”
Compounding: 1
Disc: [16x1 double]
Rates: [16x1 double]
EndTimes: [16x1 double]
StartTimes: [16x1 double]
EndDates: [16x1 double]
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StartDates: 736425

ValuationDate: 736425
Basis: O
EndMonthRule: 1

Define the swaption.

SwaptionSettle = "5-Apr-2016-;

SwaptionExerciseDate = "5-Apr-2017-;

SwapMaturity = "5-Apr-2022-;

Reset = 1;

OptSpec = “call”;

TimeToExercise = yearfrac(SwaptionSettle,SwaptionExerciseDate);

Use swapbyzero to compute the forward swap rate.

LegRate = [NaN 0]; % To compute the forward swap rate, set the fixed rate to NaN.
[~, CurrentForwardValue] = swapbyzero(RateSpec,lLegRate,SwaptionSettle,SwapMaturity, ...
"StartDate” ,SwaptionExerciseDate)

CurrentForwardValue =

6.6384e-04

Specify amount of shift in decimals for Shifted Black and Shifted SABR models.

Shift = 0.008; % 0.8 percent shift

Load the market implied Shifted Black volatility data for swaptions.

MarketShiftedBlackVolatilities = [21.1; 15.3; 14.0; 14.6; 16.0; 17.7; 19.8; 23.9; 26.2
StrikeGrid = [-0.5; -0.25; -0.125; 0; 0.125; 0.25; 0.5; 1.0; 1.5]/100;

MarketStrikes = CurrentForwardvValue + StrikeGrid;

ATMShiftedBlackVolatility = MarketShiftedBlackVolatilities(StrikeGrid==0);

Calibrate the Shifted SABR model parameters.

To better represent the market at-the-money volatility, the Alpha parameter

value is implied by the market at-the-money volatility. This is similar to the

"Method 2" in “Calibrate the SABR Model ”. However, note the addition of Shift to
CurrentForwardValue and the use of the "Shift" parameter with blackvolbysabr.
The Beta parameter is predetermined at 0.5.
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Beta = 0.5;

This function solves the Shifted SABR at-the-money volatility equation as a polynomial
of Alpha. Note the addition of Shift to CurrentForwardValue.

alpharoots = @(Rho,Nu) roots([---
(1 - Beta)"2*TimeToExercise/24/(CurrentForwardvValue + Shift)~(2 - 2*Beta) ...
Rho*Beta*Nu*TimeToExercise/4/(CurrentForwardvValue + Shifo)~(1 - Beta) ...
(1 + (2 - 3*Rho™"2)*Nun2*TimeToExercise/24) ...
-ATMShiftedBlackVolatility*(CurrentForwardvValue + Shift)~(1 - Beta)]);

This function converts at-the-money volatility into Alpha by picking the smallest positive
real root.

atmVol2ShiftedSabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) --..
x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));

Fit Rho and Nu (while converting at-the-money volatility into Alpha). Note the *Shift*"
parameter of blackvolbysabr is set to the prespecified shift.

objFun = @(X) MarketShiftedBlackVolatilities - ...
blackvolbysabr(atmVol2ShiftedSabrAlpha(X(1), X(2)),
Beta, X(1), X(2), SwaptionSettle, SwaptionExerciseDate, CurrentForwardValue,
MarketStrikes, "Shift", Shift);

options = optimoptions("Isgnonlin®, "Display”, "none”);

X = Isgnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
Rho = X(1);

Nu = X(2);

Get the final Alpha from the calibrated parameters.

Alpha = atmVol2ShiftedSabrAlpha(Rho, Nu)
Alpha =
0.0133

Show the calibrated Shifted SABR parameters.

CalibratedPrameters = array2table([Shift Alpha Beta Rho Nu],--.
"VariableNames® ,{"Shift" "Alpha® "Beta® "Rho" "Nu®"}, ...
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"RowNames*® ,{"1Y into 5Y"})

CalibratedPrameters =
1x5 table

Shift Alpha Beta Rho Nu

1Y into 5Y 0.008 0.013345 0.5 0.46698 0.49816

Compute the swaption volatilities using the calibrated Shifted SABR model.

Use blackvolbysabr with the "Shift" parameter.

Strikes = (-0.6:0.01:1.6)"/100; % Include negative strikes.

SABRShiftedBlackVolatilities = blackvolbysabr(Alpha, Beta, Rho, Nu, SwaptionSettle,

SwaptionExerciseDate, CurrentForwardValue, Strikes, "Shift", Shift);

figure;

plot(MarketStrikes, MarketShiftedBlackVolatilities, "0°,
Strikes, SABRShiftedBlackVolatilities);

h = gca;

line([0,0],[min¢h.YLim),max(h.YLim)], "LineStyle~","--");

ylim([0.13 0.31])

xlabel ("Strike®);

legend("Market quotes”, "Shifted SABR", "location®, "southeast®);

title (["Shifted Black Volatility (",num2str(Shift*100)," percent shift)"]);
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Shifted Black Volatility (0.8 percent shift)
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Price the swaptions, including those with negative strikes.

Use swaptionbyblk with the "Shift" parameter to compute swaption prices using the
Shifted Black model.

SwaptionPrices = swaptionbyblk(RateSpec, OptSpec, Strikes, SwaptionSettle, SwaptionExel

SwapMaturity, SABRShiftedBlackVolatilities, "Reset”, Reset, °"Shift", Shift);
figure;
plot(Strikes, SwaptionPrices, "r");
h = gca;
line([0,0],[minCh.YLim),max(h.YLim)],“"LineStyle", " --");
xlabel ("Strike");
title ("Swaption Price®);
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Swaption Price
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Compute Shifted SABR Delta.

Use optsensbysabr with the "Shift" parameter to compute Delta using the Shifted
SABR model.

ShiftedSABRDelta = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, SwaptionSettle,
SwaptionExerciseDate, CurrentForwardValue, Strikes, OptSpec, °“Shift", Shift);

figure;

plot(Strikes,ShiftedSABRDelta, "r-");

ylim([-0.002 1.002]);

h = gca;
line([0,0],[minCh.YLim),max(h.YLim)], "LineStyle®, " --");
xlabel ("Strike®);
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title ("Delta”);
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Compute the probability density.

The risk-neutral probability density of the terminal underlying asset prices can
be approximated as the second derivative of swaption prices with respect to strike
(Breeden and Litzenberger, 1978). As can be seen in the plot below, the computed

probability density is positive for some negative rates above -0.8 percent (the lower bound
determined by "Shift").

NumGrids = length(Strikes);

ProbDensity = zeros(NumGrids-2,1);
dStrike = mean(diff(Strikes));
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for k = 2:(NumGrids-1)

ProbDensity(k-1) = (SwaptionPrices(k-1) - 2*SwaptionPrices(k) + SwaptionPrices(k+1
end
ProbDensity = ProbDensity./sum(ProbDensity);
ProbStrikes = Strikes(2:end-1);
figure;

plot(ProbStrikes,ProbDensity,"r-");
h = gca;

line([0,0],[minCh.YLim),max(h.YLim)], "LineStyle", " --");
xlabel ("Strike");
title ("Probability Density®);
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See Also

capbyblk | capbynormal | capvolstrip | floorbyblk | fFloorbynormal |
Ffloorvolstrip | optsensbysabr | swaptionbyblk | swaptionbynormal

Related Examples
. “Calibrate the SABR Model ” on page 2-34
. “Price a Swaption Using the SABR Model” on page 2-40

More About
. “Work with Negative Interest Rates” on page 2-21
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This example shows how to use two different methods to calibrate the SABR stochastic
volatility model from market implied Black volatilities. Both approaches use
blackvolbysabr.

In this section...

“Load Market Implied Black Volatility Data ” on page 2-34
“Method 1: Calibrate Alpha, Rho, and Nu Directly” on page 2-35

“Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility ” on
page 2-35

“Use the Calibrated Models” on page 2-37

“References” on page 2-39

Load Market Implied Black Volatility Data

This example shows how to set up hypothetical market implied Black volatilities for
European swaptions over a range of strikes before calibration. The swaptions expire in
three years from the Settle date and have 10-year swaps as the underlying instrument.
The rates are expressed in decimals. (Changing the units affect the numerical value and
interpretation of the Alpha input parameter to the function blackvolbysabr.)

Load the market implied Black volatility data for swaptions expiring in three years.

Settle = "12-Jun-20137;
ExerciseDate = "12-Jun-2016"-;

3.0 3.5 4.0 4.5 5.0]"/100;

MarketStrikes = [2.0 2.5
= [45.6 41.6 37.9 36.6 37.8 39.2 40.0]"/100;

MarketVolatilities

At the time of Settle, define the underlying forward rate and the at-the-money
volatility.

CurrentForwardvValue = MarketStrikes(4)
ATMVolatility = MarketVolatilities(4)

CurrentForwardValue =

0.0350



Calibrate the SABR Model

ATMVolatility =

0.3660

Method 1: Calibrate Alpha, Rho, and Nu Directly

This example shows how to calibrate the Alpha, Rho, and Nu input parameters directly.
The value of Beta is predetermined either by fitting historical market volatility data or
by choosing a value deemed appropriate for that market [1].

Define the predetermined Beta.

Betal = 0.5;

After fixing the value of B (Beta), the parameters a (Aplha), P (Rho), and v (Nu)
are all fitted directly. The Optimization Toolbox™ function Isgnonlin generates the
parameter values that minimize the squared error between the market volatilities and
the volatilities computed by blackvolbysabr.

% Calibrate Alpha, Rho, and Nu

objFun = @(X) MarketVolatilities - ...
blackvolbysabr(X(1), Betal, X(2), X(3), Settle,
ExerciseDate, CurrentForwardValue, MarketStrikes);

X = Isgnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);
Alphal = X(1);

Rhol = X(2);

Nul = X(3);

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the default value of the function tolerance.

Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money
Volatility

This example shows how to use an alternative calibration method where the value of B
(Beta) is again predetermined as in Method 1.
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Define the predetermined Beta.

Beta2 = 0.5;

However, after fixing the value of B (Beta), the parameters P (Rho), and v (Nu) are
fitted directly while o (Alpha) is implied from the market at-the-money volatility.
Models calibrated using this method produce at-the-money volatilities that are equal
to market quotes. This approach is widely used in swaptions, where at-the-money
volatilities are quoted most frequently and are important to match. In order to imply o

(Alpha) from market at-the-money volatility (O ATy ), the following cubic polynomial is
solved for o (Alpha), and the smallest positive real root is selected [2].

A2 _ 2
N By e
24 F <~ 4F"

where:

F is the current forward value.

T 1is the year fraction to maturity.

To accomplish this, define an anonymous function as:

% Year fraction from Settle to option maturity
T = yearfrac(Settle, ExerciseDate, 1);

% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharoots = @(Rho,Nu) roots([---
(1 - Beta2)"2*T/24/CurrentForwardvValue™(2 - 2*Beta2) ...
Rho*Beta2*Nu*T/4/CurrentForwardvValue®(1 - Beta2) ...
(1 + (2 - 3*Rho™2)*Nun2*T/24) ...
-ATMVolatility*CurrentForwardvalue™(1 - Beta2)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root
atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) --.

x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));
The function atmVol2SabrAlpha converts at-the-money volatility into o (Alpha) for a
given set of P (Rho) and v (Nu). This function is then used in the objective function to fit
parameters P (Rho) and v (Nu).



Calibrate the SABR Model

% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha

% using atmVol2SabrAlpha)

objFun = @(X) MarketVolatilities - ...
blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)),
Beta2, X(1), X(2), Settle, ExerciseDate, CurrentForwardValue,
MarketStrikes);

X = Isgnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);

Rho2 = X(1);
Nu2 = X(2);
Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

The calibrated parameter ¢ (Alpha) is computed using the calibrated parameters P
(Rho) and v (Nu).

% Obtain final Alpha from at-the-money volatility using calibrated parameters
Alpha2 = atmVol2SabrAlpha(Rho2, Nu2);

% Display calibrated parameters

C = {Alphal Betal Rhol Nul;Alpha2 Beta2 Rho2 Nu2};

CalibratedPrameters = cell2table(C, ...
"VariableNames® ,{"Alpha® "Beta® "Rho" "Nu"}, ...
"RowNames*® ,{"Method 1°;"Method 2°})

CalibratedPrameters =

Alpha Beta Rho Nu

0.2097 0.75091
0.20568 0.79647

Method 1 0.060277
Method 2 0.058484

[eNe]
[ &)]

Use the Calibrated Models

This example shows how to use the calibrated models to compute new volatilities at any
strike value.

Compute volatilities for models calibrated using Method 1 and Method 2 and plot the
results.
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PlottingStrikes = (1.75:0.1:5.50)"/100;

% Compute volatilities for model calibrated by Method 1
ComputedVolsl = blackvolbysabr(Alphal, Betal, Rhol, Nul, Settle,
ExerciseDate, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 2
ComputedVols2 = blackvolbysabr(Alpha2, Beta2, Rho2, Nu2, Settle,
ExerciseDate, CurrentForwardValue, PlottingStrikes);

figure;

plot(MarketStrikes,MarketVolatilities, "xk",_ ..
PlottingStrikes,ComputedVolsl, "b", ...
PlottingStrikes,ComputedvVols2, "r®, ...
CurrentForwardValue,ATMVolatility, "ok", ...
"MarkerSize*®,10);

x1im([0-01 0.06]);

ylim([0.35 0.5]);

xlabel ("Strike®, "FontWeight®, “bold");

ylabel ("Implied Black Volatility", “"FontWeight®, “bold®);

legend("Market Volatilities®, "SABR Model (Method 1)°,...
"SABR Model (Method 2)*, "At-the-money volatility®);
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Calibrate the SABR Model

The model calibrated using Method 2 reproduces the market at-the-money volatility
(marked with a circle) exactly.

References

[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., Managing smile
risk, Wilmott Magazine, 2002.
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See Also

blackvolbysabr | optsensbysabr | swaptionbyblk

Related Examples
. “Price a Swaption Using the SABR Model” on page 2-40
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Price a Swaption Using the SABR Model
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This example shows how to price a swaption using the SABR model. First, a swaption
volatility surface is constructed from market volatilities. This is done by calibrating the
SABR model parameters separately for each swaption maturity. The swaption price is
then computed by using the implied Black volatility on the surface as an input to the
swaptionbyblk function.

Step 1. Load market swaption volatility data.

Load the market implied Black volatility data for swaptions.

Settle = "12-Jun-20137;

ExerciseDates = {"12-Sep-2013~;"12-Jun-2014%;"12-Jun-2015"; ...
"12-Jun-2016";"12-Jun-2017";"12-Jun-2018"; "12-Jun-2020"; ...
"12-Jun-2023"%;

YearsToExercise = yearfrac(Settle, ExerciseDates, 1);
NumMaturities = length(YearsToExercise);

MarketVolatilities = [ ...
57.6 53.7 49.4 45.6 44.1 41.1 35.2 32.0
46.6 46.9 44.8 41.6 39.8 37.4 33.4 31.0
35.9 39.3 39.6 37.9 37.2 34.7 30.5 28.9
34.1 36.5 37.8 36.6 35.0 31.9 28.1 26.6
41.0 41.3 39.5 37.8 36.0 32.6 29.0 26.0
45.8 43.4 41.9 39.2 36.9 33.2 29.6 26.3
50.3 46.9 44.0 40.0 37.5 33.8 30.2 27.3]/100;
MarketStrikes = [ ...
1.00 1.25 1.68 2.00 2.26 2.41 2.58 2.62;
1.50 1.75 2.18 2.50 2.76 2.91 3.08 3.12;
2.00 2.25 2.68 3.00 3.26 3.41 3.58 3.62;
2.50 2.75 3.18 3.50 3.76 3.91 4.08 4.12;
3.00 3.25 3.68 4.00 4.26 4.41 4.58 4.62;
3.50 3.75 4.18 4.50 4.76 4.91 5.08 5.12;
4.00 4.25 4.68 5.00 5.26 5.41 5.58 5.62]/100;

CurrentForwardValues = MarketStrikes(4,:)

CurrentForwardValues

0.0250 0.0275 0.0318 0.0350 0.0376 0.0391 0.0408 0.0412
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ATMVolatilities = MarketVolatilities(4,:)

ATMVolatilities

0.3410 0.3650 0.3780 0.3660 0.3500 0.3190 0.2810 0.2660

The current underlying forward rates and the corresponding at-the-money volatilities
across the eight swaption maturities are represented in the fourth rows of the two
matrices.

Step 2. Calibrate the SABR model parameters for each swaption maturity.

Using a model implemented in the function blackvolbysabr, a static SABR model, where
the model parameters are assumed to be constant with respect to time, the parameters
are calibrated separately for each swaption maturity (years to exercise) in a For loop.
To better represent market at-the-money volatilities, the Al pha parameter values are
implied by the market at-the-money volatilities (see "Method 2" for “Calibrate the SABR
Model ).

Define the predetermined Beta, calibrate SABR model parameters for each swaption
maturity and display calibrated parameters in a table.

Beta = 0.5;

Betas = repmat(Beta, NumMaturities, 1);
Alphas = zeros(NumMaturities, 1);

Rhos = zeros(NumMaturities, 1);

Nus = zeros(NumMaturities, 1);

options = optimoptions("Isgnonlin®, "Display”,"none”);

for k = 1:NumMaturities
% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharoots = @(Rho,Nu) roots([---

(1 - Beta)™2*YearsToExercise(k)/24/CurrentForwardValues(k)~(2 - 2*Beta) ...

Rho*Beta*Nu*YearsToExercise(k)/4/CurrentForwardValues(k)~(1 - Beta) ...
(1 + (2 - 3*Rho™2)*Nun2*YearsToExercise(k)/24) ...
-ATMVolatilities(k)*CurrentForwardvValues(k)~(1 - Beta)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root
atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) --.

x*(x>0) + realmax*(x<0 || abs(imag(x))>1le-6), alpharoots(Rho,Nu))));
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% Fit Rho and Nu (while converting at-the-money volatility into Alpha)

objFun = @(X) MarketVolatilities(:,k) - ...

X = Isgnonlin(objFun,

Rho
Nu

% Get final Alpha from the calibrated parameters
atmVol2SabrAlpha(Rho, Nu);

Alp

blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)),
Beta, X(1), X(2), Settle, ExerciseDates(k), CurrentForwardValues(k),

MarketStrikes(:,k));

= X(1);
= X(2);

ha =

Alphas(k) = Alpha;

Rhos(k) = Rho;
Nus(k) = Nuj;

end

CalibratedPrameters

= array2table([Alphas Betas Rhos Nus],--.
"VariableNames® ,{"Alpha® "Beta®" "Rho" "Nu"}, ..

"RowNames*® ,{"3M into 10Y";"1Y into 10Y";...

"2Y into 10Y";"3Y into 10Y";"4Y into 10Y";...

"5Y into 10Y";"7Y into 10Y";"10Y into 10Y"})

CalibratedPrameters

3M
1Y
2Y
3Y
4Y
5Y
Y
10Y

into
into
into
into
into
into
into

into 10Y

10Y
10Y
10Y
10Y
10Y
10Y
10Y

[0 0.5], [-1 O], [1 Inf], options);

= 8x4 table

Alpha Beta Rho Nu
0.051947 0.5 0.39572 1.4146
0.054697 0.5 0.2955 1.1257
0.058433 0.5 0.24175 0.93463
0.058484 0.5 0.20568 0.79647
0.056054 0.5 0.13685 0.76993
0.051072 0.5 0.060285 0.73595
0.04475 0.5 0.083385 0.66341
0.044548 0.5 0.02261 0.49487

Step 3. Construct a volatility surface.

Use the calibrated model to compute new volatilities at any strike value to produce a
smooth smile for a given maturity. This can be repeated for each maturity to form a

volatility surface
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Compute volatilities using the calibrated models for each maturity and plot the volatility
surface.

PlottingStrikes = (0.95:0.1:5.8)"/100;
ComputedVols = zeros(length(PlottingStrikes), NumMaturities);

for k = 1:NumMaturities

ComputedVols(:,k) = blackvolbysabr(Alphas(k), Betas(k), Rhos(k), Nus(k), Settle,
ExerciseDates(k), CurrentForwardValues(k), PlottingStrikes);

end

figure;

surf(YearsToExercise, PlottingStrikes, ComputedVols);

x1im([0 10]); ylim([0.0095 0.06]); zlim([0.2 0.8]);

view(113,32);

set(gca, "Position®, [0.13 0.11 0.775 0.815],
"PlotBoxAspectRatioMode®, “manual®);

xlabel ("Years to exercise”, "Fontweight®, "bold");

ylabel ("Strike", "Fontweight®, "bold");

zlabel (" Implied Black volatility®, "Fontweight®, "bold");
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Note, in this volatility surface, the smiles tend to get flatter for longer swaption
maturities (years to exercise). This is consistent with the Nu parameter values
tending to decrease with swaption maturity, as shown previously in the table for
CalibratedPrameters.

Step 4. Use swaptionbyblk to price a swaption.

Use the volatility surface to price a swaption that matures in five years. Define a
swaption (for a 10-year swap) that matures in five years and use the interest-rate term
structure at the time of the swaption Settle date to define the RateSpec. Use the
RateSpec to compute the current forward swap rate using the swapbyzero function.
Compute the SABR implied Black volatility for this swaption using the blackvolbysabr
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function (and it is marked with a red arrow in the figure that follows). Price the swaption
using the SABR implied Black volatility as an input to the swaptionbyblk function.

% Define the swaption

SwaptionSettle = "12-Jun-20137;
SwaptionExerciseDate = "12-Jun-2018"7;
SwapMaturity = "12-Jun-2028";

Reset = 1;

OptSpec = “call”;

Strike = 0.0263;

% Define RateSpec

ValuationDate = "12-Jun-2013~;

EndDates = {"12-Jul-2013";"12-Sep-2013";"12-Dec-2013";"12-Jun-2014";. ..
"12-Jun-2015";"12-Jun-2016";"12-Jun-2017";"12-Jun-2018"; . ..
"12-Jun-2019";"12-Jun-2020"; "12-Jun-2021";"12-Jun-2022"; ...
"12-Jun-2023";"12-Jun-2025"; "12-Jun-2028"; "12-Jun-2033"};

Rates = [0.2 0.3 0.4 0.7 0.5 0.7 1.0 1.4 1.7 1.9 ...

2.1 2.32.52.83.1 3.3]"/100;

Compounding = 1;

RateSpec = intenvset("ValuationDate", ValuationDate, "StartDates”, ValuationDate, ...
"EndDates”, EndDates, "Rates”, Rates, "Compounding”, Compounding)

RateSpec = struct with fields:
FinObj: "RateSpec”
Compounding: 1
Disc: [16x1 double]
Rates: [16x1 double]
EndTimes: [16x1 double]
StartTimes: [16x1 double]
EndDates: [16x1 double]
StartDates: 735397
ValuationDate: 735397
Basis: O
EndMonthRule: 1

% Use swapbyzero

LegRate = [NaN 0]; % To compute the forward swap rate, set the coupon rate to NaN.

[~, CurrentForwardSwapRate] = swapbyzero(RateSpec, LegRate, SwaptionSettle, SwapMaturi-
"StartDate”, SwaptionExerciseDate);

% Use blackvolbysabr
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SABRBlackVolatility = blackvolbysabr(Alphas(6), Betas(6), Rhos(6), Nus(6), SwaptionSet
SwaptionExerciseDate, CurrentForwardSwapRate, Strike)

SABRBlackVolatility = 0.3932

text (YearsToExercise(6), Strike, SABRBlackVolatility, “\leftarrow®,...
"Color®, "r", "FontWeight®", "bold®, "FontSize", 22);

0.8
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o
- 'D.4 1
* 0
=
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0.2 4

0.1

0.04 .
0.05 10 Years to exercise
Strike 0.06

% Use swaptionbyblk
Price = swaptionbyblk(RateSpec, OptSpec, Strike, SwaptionSettle, SwaptionExerciseDate,
SwapMaturity, SABRBlackVolatility, “Reset”, Reset)

Price = 14.2403
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[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., “Managing Smile
Risk,” Wilmott Magazine, 2002.

[2] West, G., “Calibration of the SABR Model in Illiquid Markets,” Applied Mathematical
Finance, 12(4), pp. 371-385, 2004.

See Also
blackvolbysabr | swapbyzero | swaptionbyblk

Related Examples
. “Calibrate the SABR Model ” on page 2-34
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In this section...

“Interest-Rate Modeling” on page 2-48
“Rate and Price Trees” on page 2-49

“Viewing Rate or Price Movement” on page 2-50

Interest-Rate Modeling

Financial Instruments Toolbox computes prices and sensitivities of interest-rate
contingent claims based on several methods of modeling changes in interest rates over
time:

* The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest rates.
+  Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest rates and
a specification of the volatility of forward rates to build a tree representing the
evolution of the interest rates, based on a statistical process.

* Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate (annualized
1-period interest rate). The model uses long rates and their volatilities to construct a
tree of possible future short rates. The resulting tree can then be used to determine
the value of interest-rate sensitive securities from this tree.

*  Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and
the volatility term structure to build a trinomial recombining tree of short rates. The

resulting tree is used to value interest-rate dependent securities. The implementation

of the HW model in Financial Instruments Toolbox is limited to one factor.
* Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the HW model.

For detailed information about interest-rate models, see:
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* “Pricing Using Interest-Rate Term Structure” on page 2-70 for a discussion of
price and sensitivity based on portfolios of zero-coupon bonds

+ “Pricing Using Interest-Rate Tree Models” on page 2-97 for a discussion of price
and sensitivity based on the HJM and BDT interest-rate models

Note Historically, the initial version of Financial Instruments Toolbox provided only
the HJM interest-rate model. A later version added the BDT model. The current
version adds both the HW and BK models. This section provides extensive examples
of using the HJM and BDT models to compute prices and sensitivities of interest-rate
based financial derivatives.

The HW and BK tree structures are similar to the BDT tree structure. To avoid
needless repetition throughout this section, documentation is provided only where
significant deviations from the BDT structure exist. Specifically, “HW and BK Tree
Structures” on page 2-92 explains the few noteworthy differences among the

various formats.

Rate and Price Trees

The interest-rate or price trees supported in this toolbox can be either binomial (two
branches per node) or trinomial (three branches per node). Typically, binomial trees
assume that underlying interest rates or prices can only either increase or decrease at
each node. Trinomial trees allow for a more complex movement of rates or prices. With
trinomial trees, the movement of rates or prices at each node is unrestricted (for example,
up-up-up or unchanged-down-down).

Types of Trees

Financial Instruments Toolbox trees can be classified as bushy or recombining. A
bushy tree is a tree in which the number of branches increases exponentially relative

to observation times; branches never recombine. In this context, a recombining tree is
the opposite of a bushy tree. A recombining tree has branches that recombine over time.
From any given node, the node reached by taking the path up-down is the same node
reached by taking the path down-up. A bushy tree and a recombining binomial tree are
illustrated next.
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Bushy Tree

Recombining Binomial Tree

In this toolbox the Heath-Jarrow-Morton model works with bushy trees. The Black-
Derman-Toy model, on the other hand, works with recombining binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and Black-
Karasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement

This toolbox provides the data file deriv.mat that contains four interest-rate based
trees:

* HJIMTree — A bushy binomial tree

+ BDTTree — A recombining binomial tree

* HWTree and BKTree — Recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays the

shape and data of price, interest rate, and cash flow trees. Viewed with treeviewer, the
bushy shape of an HJM tree and the recombining shape of a BDT tree are apparent.
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HIJMTree (bushy)

BDTTree (recombining)

With treeviewer, you can also see the recombining shape of HW and BK trinomial
trees.

HWTree and BKTree (recombining)

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens

| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm
| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
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capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt |
Ffixedbybk | fixedbyhjm | Fixedbyhw | Fixedbyzero | floatbybdt | floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | Floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjymsens | hjmtimespec | hymtree | hymvolspec | hwcalbycap | hwcalbyfloor

| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Graphical Representation of Trees” on page 2-155
“Understanding the Interest-Rate Term Structure” on page 2-53

More About

“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Understanding the Interest-Rate Term Structure

In this section...

“Introduction” on page 2-53

“Interest Rates Versus Discount Factors” on page 2-53

Introduction

The interest-rate term structure represents the evolution of interest rates through
time. In MATLAB, the interest-rate environment is encapsulated in a structure
called RateSpec (rate specification). This structure holds all information required
to completely identify the evolution of interest rates. Several functions included in
Financial Instruments Toolbox software are dedicated to the creating and managing
of the RateSpec structure. Many others take this structure as an input argument
representing the evolution of interest rates.

Before looking further at the RateSpec structure, examine three functions that provide
key functionality for working with interest rates: disc2rate, its opposite, rate2disc,
and ratetimes. The first two functions map between discount factors and interest rates.
The third function, ratetimes, calculates the effect of term changes on the interest
rates.

Interest Rates Versus Discount Factors

Discount factors are coefficients commonly used to find the current value of future cash
flows. As such, there is a direct mapping between the rate applicable to a period of time,
and the corresponding discount factor. The function disc2rate converts discount factors
for a given term (period) into interest rates. The function rate2disc does the opposite; it
converts interest rates applicable to a given term (period) into the corresponding discount
factors.

Calculating Discount Factors from Rates

As an example, consider these annualized zero-coupon bond rates.

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
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From To Rate
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

To calculate the discount factors corresponding to these interest rates, call rate2disc
using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,
ValuationDate)

where:

+ Compounding represents the frequency at which the zero rates are compounded when
annualized. For this example, assume this value to be 2.

+ Rates is a vector of annualized percentage rates representing the interest rate
applicable to each time interval.

+ EndDates is a vector of dates representing the end of each interest-rate term (period).

+ StartDates is a vector of dates representing the beginning of each interest-rate
term.

+ ValuationDate is the date of observation for which the discount factors are
calculated. In this particular example, use February 15, 2000 as the beginning date
for all interest-rate terms.

Next, set the variables in MATLAB.

StartDates = ["15-Feb-2000"];

EndDates = ["15-Aug-20007; "15-Feb-2001"; "15-Aug-2001-;...
"15-Feb-2002"; "15-Aug-20027];

Compounding = 2;
ValuationDate = ["15-Feb-2000"];

Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

Finally, compute the discount factors.

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,...
ValuationDate)

Disc =
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0.9756
0.9463
0.9151
0.8799
0.8319

By adding a fourth column to the rates table (see “Calculating Discount Factors from

Rates” on page 2-53) to include the corresponding discounts, you can see the evolution

of the discount factors.

From To Rate Discount
15 Feb 2000 15 Aug 2000 0.05 0.9756
15 Feb 2000 15 Feb 2001 0.056 0.9463
15 Feb 2000 15 Aug 2001 0.06 0.9151
15 Feb 2000 15 Feb 2002 0.065 0.8799
15 Feb 2000 15 Aug 2002 0.075 0.8319

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments: EndTimes
and StartTimes. These vectors of time factors represent the start dates and end dates

in discount periodic units. The scale of these units is determined by the value of the input
variable Compounding.

To examine the time factor outputs, find the corresponding values in the previous

example.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,...

EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]

Times =

[eNoNeoNeoNe)

as~wnNpk
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Because the valuation date is equal to the start date for all periods, the StartTimes
vector is composed of 0s. Also, since the value of Compounding is 2, the rates are
compounded semiannually, which sets the units of periodic discount to six months. The
vector EndDates is composed of dates separated by intervals of six months from the
valuation date. This explains why the EndTimes vector is a progression of integers from
1to 5.

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses periodic
discount units instead of dates. Since the relationship between discount factors

and interest rates is based on time periods and not on absolute dates, this form of
rate2disc allows you to work directly with time periods. In this mode, the valuation
date corresponds to 0, and the vectors StartTimes and EndTimes are used as input
arguments instead of their date equivalents, StartDates and EndDates. This syntax
for rate2disc is:

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously, you should
obtain the previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

O

0

o]
I

0.9756
0.9463
0.9151
0.8799
0.8319

Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates applicable
to a set of compounding periods, given the discount factor in those periods. The syntax for
calling this function is:

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,
ValuationDate)

Each argument to this function has the same meaning as in rate2disc. Use the results
found in the previous example to return the rate values you started with.
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Rates = disc2rate(Compounding, Disc, EndDates, StartDates, ...
ValuationDate)

Rates =

0.0500
0.0560
0.0600
0.0650
0.0750

Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and EndTimes
vectors representing the start and end times measured in discount periodic units. Again,
working with the same values as before, you should obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,...
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

Result = [StartTimes, EndTimes, Rates]

Result =
0 1.0000 0.0500
0 2.0000 0.0560
0 3.0000 0.0600
0 4.0000 0.0650
0 5.0000 0.0750

As with rate2disc, the relationship between rates and discount factors is determined
by time periods and not by absolute dates. So, the alternate syntax for disc2rate uses
time vectors instead of dates, and it assumes that the valuation date corresponds to time
= 0. The time-based calling syntax is:

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, you again obtain the original values for the interest rates.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)

Rates
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0.0500
0.0560
0.0600
0.0650
0.0750

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
fixedbybk | Fixedbyhjm | Fixedbyhw | fixedbyzero | floatbybdt | Floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjmsens | hjmtimespec | hymtree | hyjmvolspec | hwcalbycap | hwcalbyfloor

| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Modeling the Interest-Rate Term Structure” on page 2-65
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Graphical Representation of Trees” on page 2-155

More About

“Supported Interest-Rate Instruments” on page 2-2
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“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Interest-Rate Term Conversions

Interest-rate evolution is typically represented by a set of interest rates, including the

beginning and end of the periods the rates apply to. For zero rates, the start dates are

typically at the valuation date, with the rates extending from that valuation date until
their respective maturity dates.

Spot Curve to Forward Curve Conversion

Frequently, given a set of rates including their start and end dates, you may be
interested in finding the rates applicable to different terms (periods). This problem is
addressed by the function ratetimes. This function interpolates the interest rates given
a change in the original terms. The syntax for calling ratetimes is

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:
+ Compounding represents the frequency at which the zero rates are compounded when

annualized.

+ RefRates is a vector of initial interest rates representing the interest rates
applicable to the initial time intervals.

+ RefEndDates is a vector of dates representing the end of the interest rate terms
(period) applicable to RefRates.

+ RefStartDates is a vector of dates representing the beginning of the interest rate
terms applicable to RefRates.

+ EndDates represent the maturity dates for which the interest rates are interpolated.

+ StartDates represent the starting dates for which the interest rates are
interpolated.

+ ValuationDate is the date of observation, from which the StartTimes and
EndTimes are calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups:

+ The initial or reference interest rates, including the terms for which they are valid

* Terms for which the new interest rates are calculated
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As an example, consider the rate table specified in “Calculating Discount Factors from
Rates” on page 2-53.

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

Assuming that the valuation date is February 15, 2000, these rates represent zero-
coupon bond rates with maturities specified in the second column. Use the function
ratetimes to calculate the forward rates at the beginning of all periods implied in the
table. Assume a compounding value of 2.

% Reference Rates.

RefStartDates = ["15-Feb-2000"];

RefEndDates = ["15-Aug-20007; "15-Feb-2001"; "15-Aug-2001-;...
"15-Feb-2002"; "15-Aug-2002-];

Compounding = 2;

ValuationDate = ["15-Feb-2000"];

RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.

StartDates = ["15-Feb-2000"; "15-Aug-20007; "15-Feb-2001";...
"15-Aug-2001*; "15-Feb-2002"];

EndDates = [F15-Aug-2000"; "15-Feb-2001"; "15-Aug-2001-";...
"15-Feb-2002"; "15-Aug-2002-];

% Find the new rates.

Rates = ratetimes(Compounding, RefRates, RefEndDates, ...
RefStartDates, EndDates, StartDates, ValuationDate)

Rates =

0.0500
0.0620
0.0680
0.0801
0.1155

Place these values in a table like the previous one. Observe the evolution of the forward
rates based on the initial zero-coupon rates.
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From To Rate

15 Feb 2000 15 Aug 2000 0.0500
15 Aug 2000 15 Feb 2001 0.0620
15 Feb 2001 15 Aug 2001 0.0680
15 Aug 2001 15 Feb 2002 0.0801
15 Feb 2002 15 Aug 2002 0.1155

Alternative Syntax (ratetimes)

The ratetimes function can provide the additional output arguments StartTimes

and EndTimes, which represent the time factor equivalents to the StartDates and
EndDates vectors. The ratetimes function uses time factors for interpolating the rates.
These time factors are calculated from the start and end dates, and the valuation date,
which are passed as input arguments. ratetimes can also use time factors directly,
assuming time = 0 as the valuation date. This alternate syntax is:

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In this case, you
must first find the time factors of the reference curve. Use date2time for this.

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes

abrwNPFE

RefStartTimes = date2time(ValuationDate, RefStartDates,...
Compounding)

RefStartTimes

0
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These are the expected values, given semiannual discounts (as denoted by a value of 2 in
the variable Compounding), end dates separated by 6-month periods, and the valuation
date equal to the date marking beginning of the first period (time factor = 0).

Now call ratetimes with the alternate syntax.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, ...
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Rates =

0.0500
0.0620
0.0680
0.0801
0.1155

EndTimes and StartTimes have, as expected, the same values they had as input
arguments.

Times = [StartTimes, EndTimes]

Times =
0 1
1 2
2 3
3 4
4 5
See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cFfbyhjm | cfbyhw | cfbyzero | Fixedbybdt |
Ffixedbybk | fixedbyhjm | fixedbyhw | Fixedbyzero | floatbybdt | floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | Floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjymsens | hjmtimespec | hymtree | hymvolspec | hwcalbycap | hwcalbyfloor
| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
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| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Modeling the Interest-Rate Term Structure” on page 2-65
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Graphical Representation of Trees” on page 2-155

More About

“Understanding the Interest-Rate Term Structure” on page 2-53
“Supported Interest-Rate Instruments” on page 2-2

“Supported Equity Derivatives” on page 3-24

“Supported Energy Derivatives” on page 3-41
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Modeling the Interest-Rate Term Structure

Financial Instruments Toolbox includes a set of functions to encapsulate interest-
rate term information into a single structure. These functions present a convenient
way to package all information related to interest-rate terms into a common format,
and to resolve interdependencies when one or more of the parameters is modified. For
information, see:

+ “Creating or Modifying (intenvset)” on page 2-65 for a discussion of how to create
or modify an interest-rate term structure (RateSpec) using the intenvset function

*  “Obtaining Specific Properties (intenvget)” on page 2-67 for a discussion of how to
extract specific properties from a RateSpec

Creating or Modifying (intenvset)

The main function to create or modify an interest-rate term structure RateSpec (rates
specification) is intenvset. If the first argument to this function is a previously created
RateSpec, the function modifies the existing rate specification and returns a new one.
Otherwise, it creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments based

on yields (zero coupon rates) or forward rates, specify zero rates or forward rates as

the input argument. However, the RateSpec structure is not limited or specific to this
problem domain. RateSpec is an encapsulation of rates-times relationships; intenvset
acts as either a constructor or a modifier, and intenvget as an accessor. The interest
rate models supported by the Financial Instruments Toolbox software work either with
zero coupon rates or forward rates.

The other intenvset arguments are name-value pairs. The name-value pair arguments
that can be specified or modified are:

+ Basis
+ Compounding

+ Disc

+ EndDates

* EndMonthRule
* Rates

+ StartDates
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+ ValuationDate
For more information on Basis, see basis.

Consider again the original table of interest rates (see “Calculating Discount Factors
from Rates” on page 2-53).

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

Use the information in this table to populate the RateSpec structure.

StartDates = ["15-Feb-2000"];

EndDates = [*15-Aug-2000";
"15-Feb-2001";
"15-Aug-2001-;
"15-Feb-2002";
"15-Aug-2002-];

Compounding = 2;

ValuationDate = ["15-Feb-2000"];

Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset("Compounding”,Compounding, "StartDates”, ...
StartDates, "EndDates”, EndDates, "Rates”, Rates, ...
"ValuationDate", ValuationDate)

rs =

FinObj: "RateSpec®
Compounding: 2
Disc: [5x1 double]
Rates: [5x1 double]
EndTimes: [5x1 double]
StartTimes: [5x1 double]
EndDates: [5x1 double]
StartDates: 730531
ValuationDate: 730531
Basis: O
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EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in the call

to RateSpec. The values of the automatically completed properties depend on the
properties that are explicitly passed. Consider for example the StartTimes and
EndTimes vectors. Since the StartDates and EndDates vectors are passed in, and the
ValuationDate, intenvset has all the information required to calculate StartTimes
and EndTimes. Hence, these two properties are read-only.

Obtaining Specific Properties (intenvget)

The complementary function to intenvset is intenvget, which gets function-specific
properties from the interest-rate term structure. Its syntax is:

ParameterValue = intenvget(RateSpec, "ParameterName®)

To obtain the vector EndTimes from the RateSpec structure, enter:

EndTimes = intenvget(rs, "EndTimes")

EndTimes

abhwWNPEF

To obtain Disc, the values for the discount factors that were calculated automatically by
intenvset, type:

Disc intenvget(rs, "Disc")

Disc =

0.9756
0.9463
0.9151
0.8799
0.8319

These discount factors correspond to the periods starting from StartDates and ending
in EndDates.
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Caution Although you can directly access these fields within the structure instead

of using intenvget, it is advised not to do so. The format of the interest-rate term
structure could change in future versions of the toolbox. Should that happen, any code
accessing the RateSpec fields directly would stop working.

Now use the RateSpec structure with its functions to examine how changes in specific
properties of the interest-rate term structure affect those depending on it. As an exercise,
change the value of Compounding from 2 (semiannual) to 1 (annual).

rs = intenvset(rs, "Compounding®, 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a change
in Compounding from 2 to 1 redefines the basic unit from semiannual to annual. This
means that a period of six months is represented with a value of 0.5, and a period of one
year is represented by 1. To obtain the vectors StartTimes and EndTimes, enter:

StartTimes = intenvget(rs, "“StartTimes");
EndTimes = intenvget(rs, "EndTimes");
Times = [StartTimes, EndTimes]

Times =

-5000
-0000
-5000
-0000
-5000

[eNeoNeoNoNe)
NNPFE PO

Since all the values in StartDates are the same as the valuation date, all StartTimes
values are 0. On the other hand, the values in the EndDates vector are dates separated

by 6-month periods. Since the redefined value of compounding is 1, EndTimes becomes a
sequence of numbers separated by increments of 0.5.

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
Ffixedbybk | fixedbyhjm | fixedbyhw | Fixedbyzero | floatbybdt | floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
Tfloorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hymprice |
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hjmsens | hjmtimespec | hymtree | hjmvolspec | hwcalbycap | hwcalbyfloor

| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Graphical Representation of Trees” on page 2-155

More About
“Understanding the Interest-Rate Term Structure” on page 2-53
“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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2-70

In this section...

“Introduction” on page 2-70

“Computing Instrument Prices” on page 2-71
“Computing Instrument Sensitivities” on page 2-72
“OAS for Callable and Puttable Bonds” on page 2-74

“Agency OAS” on page 2-74

Introduction

The instruments can be presented to the functions as a portfolio of different types of
instruments or as groups of instruments of the same type. The current version of the
toolbox can compute price and sensitivities for five instrument types of using interest-
rate curves:

* Bonds

* Fixed-rate notes

* Floating-rate notes

+ Swaps

+  OAS for callable and puttable bonds
+ Agency OAS

In addition to these instruments, the toolbox also supports the calculation of price and
sensitivities of arbitrary sets of cash flows.

Options and interest-rate floors and caps are absent from the above list of supported
instruments. These instruments are not supported because their pricing and sensitivity
function require a stochastic model for the evolution of interest rates. The interest-rate
term structure used for pricing is treated as deterministic, and as such is not adequate
for pricing these instruments.

Financial Instruments Toolbox also contains functions that use the Heath-Jarrow-
Morton (HJM) and Black-Derman-Toy (BDT) models to compute prices and sensitivities
for financial instruments. These models support computations involving options and
interest-rate floors and caps. See “Pricing Using Interest-Rate Tree Models” on page
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2-97 for information on computing price and sensitivities of financial instruments
using the HJM and BDT models.

Computing Instrument Prices

The main function used for pricing portfolios of instruments is intenvprice. This
function works with the family of functions that calculate the prices of individual types
of instruments. When called, intenvprice classifies the portfolio contained in InstSet
by instrument type, and calls the appropriate pricing functions. The map between
instrument types and the pricing function intenvprice calls is

bondbyzero: Price a bond by a set of zero curves
fixedbyzero: Price a fixed-rate note by a set of zero curves
floatbyzero: Price a floating-rate note by a set of zero curves
swapbyzero: Price a swap by a set of zero curves

You can use each of these functions individually to price an instrument. Consult the
reference pages for specific information on using these functions.

intenvprice takes as input an interest-rate term structure created with intenvset,
and a portfolio of interest-rate contingent derivatives instruments created with instadd.

The syntax for using intenvprice to price an entire portfolio is
Price = intenvprice(RateSpec, InstSet)
where:

* RateSpec is the interest-rate term structure.

* InstSet is the name of the portfolio.
Example: Pricing a Portfolio of Instruments

Consider this example of using the intenvprice function to price a portfolio of
instruments supplied with Financial Instruments Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set variable
ZerolnstSet. The MAT-file also contains the interest-rate term structure
ZeroRateSpec. You can display the instruments with the function instdisp.
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load deriv.mat;
instdisp(ZerolnstSet)

Index Type CouponRate Settle Maturity Period Basis...

1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN. ..

2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN. ..
Index Type CouponRate Settle Maturity FixedReset Basis...

3 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN. ..
Index Type Spread Settle Maturity FloatReset Basis...
4 Float 20 01-Jan-2000 01-Jan-2003 1 NaN. ..
Index Type LegRate Settle Maturity LegReset Basis. ..
5 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN. ..

Use intenvprice to calculate the prices for the instruments contained in the portfolio
ZerolnstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZerolnstSet)

Prices =

98.72
97 .53
98.72
100.55

3.69

The output Prices is a vector containing the prices of all the instruments in the portfolio
in the order indicated by the Index column displayed by instdisp. So, the first two
elements in Prices correspond to the first two bonds; the third element corresponds to
the fixed-rate note; the fourth to the floating-rate note; and the fifth element corresponds
to the price of the swap.

Computing Instrument Sensitivities

In general, you can compute sensitivities either as dollar price changes or as percentage
price changes. The toolbox reports all sensitivities as dollar sensitivities.

Using the interest-rate term structure, you can calculate two types of derivative price
sensitivities, delta and gamma. Delta represents the dollar sensitivity of prices to shifts
in the observed forward yield curve. Gamma represents the dollar sensitivity of delta to
shifts in the observed forward yield curve.
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The intenvsens function computes instrument sensitivities and instrument prices. If
you need both the prices and sensitivity measures, use intenvsens. A separate call to
intenvprice is not required.

Here is the syntax
[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)
where, as before:

* RateSpec is the interest-rate term structure.
+ InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and prices.

format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZerolnstSet);

Display the results in a single matrix in bank format.

All = [Delta Gamma Price]

All =
-272.64 1029.84 98.72
-347 .44 1622.65 97.53
-272.64 1029.84 98.72
-1.04 3.31 100.55
-282.04 1059.62 3.69

To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =
-2.76 10.43 98.72
-3.56 16.64 97.53
-2.76 10.43 98.72
-0.01 0.03 100.55
-76.39 286.98 3.69
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OAS for Callable and Puttable Bonds

Option Adjusted Spread (OAS) is a useful way to value and compare securities with
embedded options, like callable or puttable bonds. Basically, when the constant or flat
spread is added to the interest-rate curve/rates in the tree, the pricing model value
equals the market price. Financial Instruments Toolbox supports pricing American,
European, and Bermuda callable and puttable bonds using different interest rate models.
The pricing for a bond with embedded options is:

*  For a callable bond, where the holder has bought a bond and sold a call option to the
issuer:

Price callable bond =Price Option free bond - Price call option
* For a puttable bond, where the holder has bought a bond and a put option:

Price puttable bond =Price Option free bond + Price put option

There are two additional sensitivities related to OAS for bonds with embedded options:
Option Adjusted Duration and Option Adjusted Convexity. These are similar to the
concepts of modified duration and convexity for option-free bonds. The measure Duration
is a general term that describes how sensitive a bond’s price is to a parallel shift in the
yield curve. Modified Duration and Modified Convexity assume that the bond’s cash
flows do not change when the yield curve shifts. This is not true for OA Duration or OA
Convexity because the cash flows may change due to the option risk component of the
bond.

Function Purpose

oasbybdt Compute OAS using a BDT model.
oashybk Compute OAS using a BK model.
oasbyhjm Compute OAS using an HJM model.
oasbyhw Compute OAS using an HW model.

Agency OAS

Often bonds are issued with embedded options, which then makes standard price/
yield or spread measures irrelevant. For example, a municipality concerned about the
chance that interest rates may fall in the future might issue bonds with a provision
that allows the bond to be repaid before the bond’s maturity. This is a call option on the



Pricing Using Interest-Rate Term Structure

bond and must be incorporated into the valuation of the bond. Option-adjusted spread
(OAS), which adjusts a bond spread for the value of the option, is the standard measure
for valuing bonds with embedded options. Financial Instruments Toolbox supports
computing option-adjusted spreads for bonds with single embedded options using the
agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified
approach to compute OAS for agency issues (Government Sponsored Entities like Fannie
Mae and Freddie Mac) termed “Agency OAS.” In this approach, the bond has only one
call date (European call) and uses Black’s model (see The BMA European Callable
Securities Formula at http://www.sifma.org) to value the bond option. The price of the
bond is computed as follows:

Pricecaianie = Pricenoncaliable — PY 1C€0ption
where
Pricecaanle 1s the price of the callable bond.

Pricenoncanable 18 the price of the noncallable bond, that is, price of the bond using
bndspread.

Priceoption is the price of the option, that is, price of the option using Black’s model.

The Agency OAS is the spread, when used in the previous formula, yields the market
price. Financial Instruments Toolbox supports these functions:

Agency OAS

Agency OAS Functions Purpose

agencyoas Compute the OAS of the callable bond using the Agency
OAS model.

agencyprice Price the callable bond OAS using the Agency OAS model.

For more information on agency OAS, see “Agency Option-Adjusted Spreads” on page
6-2.

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

2-75


http://www.sifma.org

2 Interest-Rate Derivatives

2-76

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
fixedbybk | Fixedbyhjm | Fixedbyhw | fixedbyzero | floatbybdt | Floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hymprice |
hjmsens | hjmtimespec | hymtree | hjmvolspec | hwcalbycap | hwcalbyfloor

| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Pricing Using Interest-Rate Term Structure” on page 2-70

“Understanding the Interest-Rate Term Structure” on page 2-53

More About

“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Understanding Interest-Rate Tree Models

Binomaial interest-rate tree models:

In this section...

“Introduction” on page 2-77

“Building a Tree of Forward Rates” on page 2-78

“Specifying the Volatility Model (VolSpec)” on page 2-80

“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-82
“Specifying the Time Structure (TimeSpec)” on page 2-83

“Creating Trees” on page 2-85

“Examining Trees” on page 2-86

Introduction

Financial Instruments Toolbox supports the Black-Derman-Toy (BDT), Black-Karasinski
(BK), Heath-Jarrow-Morton (HJM), and Hull-White (HW) interest-rate models. The
Heath-Jarrow-Morton model is one of the most widely used models for pricing interest-
rate derivatives. The model considers a given initial term structure of interest rates and
a specification of the volatility of forward rates to build a tree representing the evolution
of the interest rates, based on a statistical process. For further explanation, see the book
Modelling Fixed Income Securities and Interest Rate Options by Robert A. Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for pricing
interest-rate derivatives. The model considers a given initial zero rate term structure

of interest rates and a specification of the yield volatilities of long rates to build a tree
representing the evolution of the interest rates. For further explanation, see the paper
“A One Factor Model of Interest Rates and its Application to Treasury Bond Options” by
Fischer Black, Emanuel Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates and

the volatility term structure to build a trinomial recombining tree of short rates. The
resulting tree is used to value interest rate-dependent securities. The implementation of
the Hull-White model in Financial Instruments Toolbox software is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the Hull-White
model.
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For further information on the Hull-White and Black-Karasinski models, see the book
Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates

The tree of forward rates is the fundamental unit representing the evolution of interest
rates in a given period of time. This section explains how to create a forward-rate tree
using Financial Instruments Toolbox.

Note To avoid needless repetition, this document uses the HJM and BDT models to
illustrate the creation and use of interest-rate trees. The HW and BK models are similar
to the BDT model. Where specific differences exist, they are documented in “HW and BK
Tree Structures” on page 2-92.

The MATLAB functions that create rate trees are hjmtree and bdttree. The hjmtree
function creates the structure, HIMTree, containing time and forward-rate information
for a bushy tree. The bdttree function creates a similar structure, BDTTree, for a
recombining tree.

This structure is a self-contained unit that includes the tree of rates (found in the
FwdTree field of the structure) and the volatility, rate, and time specifications used in
building this tree.

These functions take three structures as input arguments:
* The volatility model VolSpec. (See “Specifying the Volatility Model (VolSpec)” on
page 2-80.)

* The interest-rate term structure RateSpec. (See “Specifying the Interest-Rate Term
Structure (RateSpec)” on page 2-82.)

* The tree time layout TimeSpec. (See “Specifying the Time Structure (TimeSpec)” on
page 2-83.)

An easy way to visualize any trees you create is with the treeviewer function, which
displays trees in a graphical manner. See “Graphical Representation of Trees” on page
2-155 for information about treeviewer.
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Calling Sequence

The calling syntax for hjmtree is HIMTree = hjmtree(VolSpec, RateSpec,
TimeSpec).

Similarly, the calling syntax for bdttree is BDTTree = bdttree(VolSpec,
RateSpec, TimeSpec).

Each of these functions requires Vol Spec, RateSpec, and TimeSpec input arguments:

+ VolSpec is a structure that specifies the forward-rate volatility process. You create
Vol Spec using either of the functions hjmvolspec or bdtvolspec.

The hjmvolspec function supports the specification of up to three factors. It handles
these models for the volatility of the interest-rate term structure:

+ Constant

+ Stationary

+  Exponential
* Vasicek

Proportional

A one-factor model assumes that the interest term structure is affected by a

single source of uncertainty. Incorporating multiple factors allows you to specify
different types of shifts in the shape and location of the interest-rate structure. See
hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The volatility
remains constant between pairs of nodes on the tree. You supply the input volatility
values in a vector of decimal values. See bdtvolspec for details.

+ RateSpec is the interest-rate specification of the initial rate curve. You create this
structure with the function intenvset. (See “Modeling the Interest-Rate Term
Structure” on page 2-65.)

+ TimeSpec is the tree time layout specification. You create this variable with the
functions hymtimespec or bdttimespec. It represents the mapping between level
times and level dates for rate quoting. This structure indirectly determines the
number of levels in the tree.
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Specifying the Volatility Model (VolSpec)

Because HIJM supports multifactor (up to 3) volatility models while BDT (also, BK and
HW) supports only a single volatility factor, the hjmvolspec and bdtvolspec functions
require different inputs and generate slightly different outputs. For examples, see
“Creating an HJM Volatility Model” on page 2-80. For BDT examples, see “Creating a
BDT Volatility Model” on page 2-81.

Creating an HJM Volatility Model

The function hymvolspec generates the structure Vol Spec, which specifies the

volatility process 0 (¢,T') used in the creation of the forward-rate trees. In this context

capital T represents the starting time of the forward rate, and ¢ represents the
observation time. The volatility process can be constructed from a combination of factors
specified sequentially in the call to function that creates it. Each factor specification
starts with a character vector specifying the name of the factor, followed by the pertinent
parameters.

HJM Voldtility Specification Example

Consider an example that uses a single factor, specifically, a constant-sigma factor. The
constant factor specification requires only one parameter, the value of o . In this case,
the value corresponds to 0.10.

HIMVolSpec = hjmvolspec("Constant®, 0.10)

HIMVolSpec =

FinObj: "HJMVolSpec*
FactorModels: {"Constant"}
FactorArgs: {{1x1 cell}}
Sigmashift: 0O
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

The NumFactors field of the Vol Spec structure, VolSpec .NumFactors = 1, reveals
that the number of factors used to generate VolSpec was one. The FactorModels field
indicates that it is a Constant factor, and the NumBranches field indicates the number
of branches. As a consequence, each node of the resulting tree has two branches, one
going up, and the other going down.
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Consider now a two-factor volatility process made from a proportional factor and an
exponential factor.

% Exponential factor

Sigma_0 = 0.1;

Lambda = 1;

% Proportional factor

CurveProp = [0.11765; 0.08825; 0.06865];

CurveTerm = [ 1 M 2 : 3 1;

% Build VolSpec

HIMVolSpec = hjmvolspec("Proportional®, CurveProp, CurveTerm,...
1e6, "Exponential®, Sigma_0, Lambda)

HIMVolSpec =

FinObj: "HJMVolSpec*

FactorModels: {"Proportional® “Exponential®}
FactorArgs: {{1x3 cell} {1x2 cell}}
SigmaShift: O
NumFactors: 2

NumBranch: 3
PBranch: [0.2500 0.2500 0.5000]
Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two factors. The
tree has 3 branches per node. Each branch has probabilities of 0.25, 0.25, and 0.5, going
from top to bottom.

Creating a BDT Volatility Model

The function bdtvolspec generates the structure Vol Spec, which specifies the
volatility process. The function requires three input arguments:

* The valuation date ValuationDate
* The yield volatility end dates VolDates
* The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation method, can be
included.

The syntax used for calling bdtvolspec is:

BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve, ...
InterpMethod)

where:
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+ ValuationDate is the first observation date in the tree.

+ VolDates is a vector of dates representing yield volatility end dates.

* VolCurve is a vector of yield volatility values.

+ InterpMethod is the method of interpolation to use. The default is 1 inear.

BDT Voldtility Specification Example
Consider the following example:

ValuationDate = datenum("01-01-2000%);

EndDates = datenum(["01-01-2001"; "01-01-2002°; "01-01-2003";
"01-01-2004"; "01-01-2005"1);

Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation method is
explicitly specified, the function uses the linear default.

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec
FinObj: "BDTVolSpec*
ValuationDate: 730486
VolDates: [5x1 double]
VolCurve: [5x1 double]
VolInterpMethod: "linear”

Specifying the Interest-Rate Term Structure (RateSpec)

The structure RateSpec is an interest term structure that defines the initial forward-
rate specification from which the tree rates are derived. “Modeling the Interest-Rate
Term Structure” on page 2-65 explains how to create these structures using the function
intenvset, given the interest rates, the starting and ending dates for each rate, and the
compounding value.

Rate Specification Creation Example

Consider the following example:

Compounding = 1;

Rates = [0.02; 0.02; 0.02; 0.02];

StartDates = ["01-Jan-2000";
"01-Jan-2001";
"01-Jan-2002";
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"01-Jan-2003"];
EndDates = [F01-Jan-2001";
"01-Jan-2002";
"01-Jan-2003";
"01-Jan-2004"];
ValuationDate = "01-Jan-2000"7;

RateSpec = intenvset("Compounding®,1,"Rates”, Rates,...
“StartDates”, StartDates, "EndDates®, EndDates,...
"ValuationDate®, ValuationDate)

RateSpec =

FinObj: "RateSpec”

Compounding: 1

Disc: [4x1 double]

Rates: [4x1 double]

EndTimes: [4x1 double]

StartTimes: [4x1 double]

EndDates: [4x1 double]

StartDates: [4x1 double]

ValuationDate: 730486

Basis: O
EndMonthRulle: 1

Use the function datedisp to examine the dates defined in the variable RateSpec. For
example:

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)

The structure TimeSpec specifies the time structure for an interest-rate tree. This
structure defines the mapping between the observation times at each level of the tree and
the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function. These
functions require three input arguments:

* The valuation date ValuationDate
* The maturity date Maturity
*  The compounding rate Compounding
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For example, the syntax used for calling hjmtimespec is
TimeSpec = hjymtimespec(ValuationDate, Maturity, Compounding)
where:

+ ValuationDate is the first observation date in the tree.

* Maturity is a vector of dates representing the cash flow dates of the tree. Any
instrument cash flows with these maturities fall on tree nodes.

+ Compounding is the frequency at which the rates are compounded when annualized.
Creating a Time Specification

Calling the time specification creation functions with the same data used to create the
interest-rate term structure, RateSpec builds the structure that specifies the time
layout for the tree.

HJM Time Specification Example

Consider the following example:

Maturity = EndDates;
HIMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

HIMTimeSpec =

FinObj: "HIMTimeSpec*
ValuationDate: 730486
Maturity: [4x1 double]
Compounding: 1
Basis: O
EndMonthRule: 1

Maturities specified when building TimeSpec need not coincide with the EndDates of
the rate intervals in RateSpec. Since TimeSpec defines the time-date mapping of the
tree, the rates in RateSpec are interpolated to obtain the initial rates with maturities
equal to those in TimeSpec.

Creating a BDT Time Specification
Consider the following example:

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)
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BDTTimeSpec =

FinObj: "BDTTimeSpec*
ValuationDate: 730486
Maturity: [4x1 double]
Compounding: 1
Basis: 0O
EndMonthRule: 1

Creating Trees

Use the Vol Spec, RateSpec, and TimeSpec you have previously created as inputs to

the functions used to create HIM and BDT trees.

Creating an HJM Tree

% Reset the volatility factor to the Constant case
HIMVolSpec = hjmvolspec("Constant®, 0.10);

HIMTree = hjmtree(HIMVolSpec, RateSpec, HJIMTimeSpec)

HIMTree =

FinObj: "HIMFwdTree*®
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]1}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}

FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and TimeSpec as

input to the function bdttree to create a BDT tree.
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree =

FinObj: "BDTFwdTree”
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1.00 2.00 3.00]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3.00]}
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CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]1}
FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}

Examining Trees

When working with the models, Financial Instruments Toolbox uses trees to represent
forward rates, prices, and so on. At the highest level, these trees have structures
wrapped around them. The structures encapsulate information required to interpret
completely the information contained in a tree.

Consider this example, which uses the interest rate and portfolio data in the MAT-file
deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos
Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet Ix1 15946 struct
BKTree Ix1 5904 struct
CRRINnstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet Ix1 12434 struct
EQPTree Ix1 5058 struct
HIMInstSet 1x1 15948 struct
HIMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree Ix1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolnstSet 1x1 10282 struct
ZeroRateSpec Ix1 1580 struct
HJM Tree Structure

You can now examine in some detail the contents of the HIMTree structure contained in
this file.

HIMTree
HIMTree =

FinObj: "HIMFwdTree™
VolSpec: [1x1 struct]
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TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3]
TFwd: {[4x1 double] [3x1 double] [2x1 double]l [31}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward-rate tree. MATLAB represents it as a cell array
with each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in
FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain
the volatility, time structure, and rate structure information respectively.

First Node

Observe the forward rates in FwdTree. The first node represents the valuation date,
tObs = 0.

HIMTree.FwdTree{1}

ans =

1.0356
1.0468
1.0523
1.0563

Note Financial Instruments Toolbox uses inverse discount notation for forward rates in
the tree. An inverse discount represents a factor by which the current value of an asset is
multiplied to find its future value. In general, these forward factors are reciprocals of the
discount factors.

Look closely at the RateSpec structure used in generating this tree to see where these
values originate. Arrange the values in a single array.

[HIMTree.RateSpec.StartTimes HIMTree.RateSpec.EndTimes...
HJIMTree.RateSpec.Rates]

ans =

0 1.0000 0.0356
-0000 2.0000 0.0468
-0000 3.0000 0.0523

N -
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3.0000 4_.0000 0.0563

If you find the corresponding inverse discounts of the interest rates in the third column,
you have the values at the first node of the tree. You can turn interest rates into inverse
discounts using the function rate2disc.

Disc = rate2disc(HIMTree.TimeSpec.Compounding, - ..
HIMTree.RateSpec.Rates, HIMTree.RateSpec.EndTimes, ...
HJIMTree.RateSpec.StartTimes);

FRates = 1./Disc

FRates =
1.0356
1.0468
1.0523
1.0563

Second Node

The second node represents the first-rate observation time, tObs = 1. This node
displays two states: one representing the branch going up and the other representing the
branch going down.

Note that HIMTree.VolSpec.NumBranch = 2.

HIMTree.VolSpec

ans =

FinObj: "HJMVolSpec*
FactorModels: {"Constant"}
FactorArgs: {{1x1 cell}}
SigmaShift: 0O
NumFactors: 1
NumBranch: 2
PBranch: [0.5000 0.5000]
Fact2Branch: [-1 1]

Examine the rates of the node corresponding to the up branch.
HIMTree.FwdTree{2}(:,:,1)

ans =

[

-0364
-0420

[
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1.0461

Now examine the corresponding down branch.
HIMTree.FwdTree{2}(:,:,2)

ans =

1.0574
1.0631
1.0672

Third Node

The third node represents the second observation time, tObs = 2. This node contains
a total of four states, two representing the branches going up and the other two
representing the branches going down. Examine the rates of the node corresponding to
the up states.

HIMTree.FwdTree{3}(:,:,1)

ans =

1.0317 1.0526
1.0358 1.0568

Next examine the corresponding down states.
HIMTree.FwdTree{3}(:,:,2)

ans =

1.0526 1.0738
1.0568 1.0781

Isolating a Specific Node

Starting at the third level, indexing within the tree cell array becomes complex, and
isolating a specific node can be difficult. The function bushpath isolates a specific node
by specifying the path to the node as a vector of branches taken to reach that node. As
an example, consider the node reached by starting from the root node, taking the branch
up, then the branch down, and then another branch down. Given that the tree has only
two branches per node, branches going up correspond to a 1, and branches going down
correspond to a 2. The path up-down-down becomes the vector [1 2 2].

FRates = bushpath(HIMTree.FwdTree, [1 2 2])
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FRates =

1.0356
1.0364
1.0526
1.0674

bushpath returns the spot rates for all the nodes touched by the path specified in
the input argument, the first one corresponding to the root node, and the last one
corresponding to the target node.

Isolating the same node using direct indexing obtains
HIMTree.FwdTree{4}(:, 3, 2)

ans =
1.0674

As expected, this single value corresponds to the last element of the rates returned by
bushpath.

You can use these techniques with any type of tree generated with Financial Instruments
Toolbox, such as forward-rate trees or price trees.

BDT Tree Structure

You can now examine in some detail the contents of the BDTTree structure.

BDTTree
BDTTree =

FinObj: "BDTFwdTree®
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1.00 2.00 3.00]
TFwd: {[4x1 double] [3x1 double] [2x1 double] [3.00]}
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]1}
FwdTree: {[1.10] [1.10 1.14] [1.10 1.14 1.19] [1.09 1.12 1.16 1.22]}

FwdTree contains the actual rate tree. MATLAB represents it as a cell array with each
cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in
FwdTree. The most important are VolSpec, TimeSpec, and RateSpec, which contain
the volatility, time structure, and rate structure information respectively.
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Look at the RateSpec structure used in generating this tree to see where these values
originate. Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes. ..
BDTTree.RateSpec.Rates]

ans =
0 1.0000 0.1000
0 2.0000 0.1100
0 3.0000 0.1200
0 4._.0000 0.1250

Look at the rates in FwdTree. The first node represents the valuation date, tObs = O.
The second node represents tObs = 1. Examine the rates at the second, third, and
fourth nodes.

BDTTree.FwdTree{2}
ans =
1.0979 1.1432

The second node represents the first observation time, tObs = 1. This node contains
a total of two states, one representing the branch going up (1.0979) and the other
representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the upper branch.
So, when displaying rates, rates are falling on the upper branch and increasing on the
lower branch.

BDTTree.FwdTree{3}
ans =
1.0976 1.1377 1.1942

The third node represents the second observation time, tObs = 2. This node contains a
total of three states, one representing the branch going up (1.0976), one representing
the branch in the middle (1.1377) and the other representing the branch going down
(1.1942).

BDTTree.FwdTree{4}
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ans =
1.0872 1.1183 1.1606 1.2179

The fourth node represents the third observation time, tObs = 3. This node contains

a total of four states, one representing the branch going up (1.0872), two representing
the branches in the middle (1.1183 and 1.1606), and the other representing the branch
going down (1.2179).

Isolating a Specific Node

The function treepath isolates a specific node by specifying the path to the node as a
vector of branches taken to reach that node. As an example, consider the node reached
by starting from the root node, taking the branch up, then the branch down, and finally
another branch down. Given that the tree has only two branches per node, branches
going up correspond to a 1, and branches going down correspond to a 2. The path up-
down-down becomes the vector [1 2 2].

FRates

treepath(BDTTree.FwdTree, [1 2 2])

FRates

1.1000
1.0979
1.1377
1.1606

treepath returns the short rates for all the nodes touched by the path specified in
the input argument, the first one corresponding to the root node, and the last one
corresponding to the target node.

HW and BK Tree Structures

The HW and BK tree structures are similar to the BDT tree structure. You can see this if
you examine the sample HW tree contained in the file deriv.mat.

load deriv.mat;
HWTree

HWTree =

FinObj: "HWFwdTree*
VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1.00 2.00 3.00]
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dObs: [731947.00 732313.00 732678.00 733043.00]
CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4.00]}
Probs: {[3x1 double] [3x3 double] [3x5 double]}
Connect: {[2.00] [2.00 3.00 4.00] [2.00 2.00 3.00 4.00 4.00]%}
FwdTree: {[1.03] [1.05 1.04 1.02] [1.08 1.07 1.05 1.03 1.01] [1-09 1.08 1.06 1.04 1.02]

All fields of this structure are similar to their BDT counterparts. There are two
additional fields not present in BDT: Probs and Connect. The Probs field represents
the occurrence probabilities at each branch of each node in the tree. The Connect field
describes the connectivity of the nodes of a given tree level to nodes to the next tree level.

Probs Field

While BDT and one-factor HJM models have equal probabilities for each branch at a
node, HW and BK do not. For HW and BK trees, the Probs field indicates the likelihood
that a particular branch will be taken in moving from one node to another node on the
next level.

The Probs field consists of a cell array with one cell per tree level. Each cell is a 3-
by-NUMNODES array with the top row representing the probability of an up movement,
the middle row representing the probability of a middle movement, and the last row the
probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the structure,
corresponding to the first (root) and second levels of the tree.

HWTree.Probs{1}

0.16666666666667
0.66666666666667
0.16666666666667

HWTree.Probs{2}

0.12361333418768 0.16666666666667 0.21877591615172
0.65761074966060 0.66666666666667 0.65761074966060
0.21877591615172 0.16666666666667 0.12361333418768

Reading from top to bottom, the values in HWTree .Probs{1} correspond to the up,
middle, and down probabilities at the root node.

HWTree.Probs{2} is a 3-by-3 matrix of values. The first column represents the top
node, the second column represents the middle node, and the last column represents the
bottom node. As with the root node, the first, second, and third rows hold the values for
up, middle, and down branching off each node.
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As expected, the sum of all the probabilities at any node equals 1.
sum(HWTree.Probs{2})
1.0000 1.0000 1.0000

Connect Field

The other field that distinguishes HW and BK tree structures from the BDT tree
structure is Connect. This field describes how each node in a given level connects to the
nodes of the next level. The need for this field arises from the possibility of nonstandard
branching in a tree.

The Connect field of the HW tree structure consists of a cell array with 1 cell per tree
level.

HWTree.Connect
ans =

21 [1x3 double] [1x5 double]

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to a node in
the corresponding tree level and represents the index of the node in the next tree level
that the middle branch of the node connects to.

If you subtract 1 from the values contained in Connect, you reveal the index of the nodes
in the next level that the up branch connects to. If you add 1 to the values, you reveal the
index of the corresponding down branch.

As an illustration, consider HVTree.Connect{1}:
HWTree.Connect{1}
ans =

2

This indicates that the middle branch of the root node connects to the second (from the
top) node of the next level, as expected. If you subtract 1 from this value, you obtain 1,
which tells you that the up branch goes to the top node. If you add 1, you obtain 3, which
points to the last node of the second level of the tree.

Now consider level 3 in this example:
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HWTree.Connect{3}

2 2 3 4 4

On this level, there is nonstandard branching. This can be easily recognized because the
middle branch of two nodes is connected to the same node on the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third level of the
tree, on the top and bottom nodes. The first and second nodes connect to the same trio of
nodes on the next level. Similar branching occurs at the bottom and next-to-bottom nodes
of the tree.

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
fixedbybk | Fixedbyhjm | Fixedbyhw | fixedbyzero | floatbybdt | Floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjmsens | hjmtimespec | hymtree | hymvolspec | hwcalbycap | hwcalbyfloor
| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
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instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Overview of Interest-Rate Tree Models” on page 2-48
“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Graphical Representation of Trees” on page 2-155

More About
“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Pricing Using Interest-Rate Tree Models

In this section...

“Introduction” on page 2-97

“Computing Instrument Prices” on page 2-97

Introduction

For purposes of illustration, this section relies on the HJM and BDT models. The HW
and BK functions that perform price and sensitivity computations are not explicitly
shown here. Functions that use the HW and BK models operate similarly to the BDT
model.

Computing Instrument Prices

The portfolio pricing functions hjmprice and bdtprice calculate the price of any set
of supported instruments, based on an interest-rate tree. The functions are capable of
pricing these instrument types:

* Bonds

* Bond options

* Bond with embedded options

* Arbitrary cash flows

* Fixed-rate notes

* Floating-rate notes

* Floating-rate notes with options or embedded options

+ Caps

* Floors

* Range Notes

* Swaps

+  Swaptions
For example, the syntax for calling hjmprice is:

[Price, PriceTree] = hjmprice(HIMTree, InstSet, Options)
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Similarly, the calling syntax for bdtprice is:
[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Each function requires two input arguments: the interest-rate tree and the set of
instruments, InstSet. An optional argument, Options, further controls the pricing and
the output displayed. (See Appendix B for information about the Options argument.)

HIMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process, created
using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an interest-rate
process, created using bdttree. See “Building a Tree of Forward Rates” on page 2-78 to
learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the set of
instruments to be priced independently using the model.

Options is an options structure created with the function derivset. This structure
defines how the tree is used to find the price of instruments in the portfolio, and how
much additional information is displayed in the command window when calling the
pricing function. If this input argument is not specified in the call to the pricing function,
a default Options structure is used. The pricing options structure is described in “Pricing
Options Structure” on page B-2.

The portfolio pricing functions classify the instruments and call the appropriate
instrument-specific pricing function for each of the instrument types. The HJM
instrument-specific pricing functions are bondbyhjm, cfbyhjm, Fixedbyhjm,
Ffloatbyhjm, optbndbyhjm, rangefloatbyhjm, swapbyhjm, and swaptionbyhjm. A
similarly named set of functions exists for BD'T models. You can also use these functions
directly to calculate the price of sets of instruments of the same type.

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate data in
the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB
workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.

whos

Name Size Bytes Class Attributes
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BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRINstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPINnstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HIMInstSet 1x1 15948 struct
HIMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolnstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

HIMTree and HIMInstSet are the input arguments required to call the function
hjmprice.

Use the function instdisp to examine the set of instruments contained in the variable

HIMInstSet.
instdisp(HIMInstSet)
Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN  NaN NaN NaN NaN NaN NaN
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN  NaN NaN NaN NaN NaN NaN
Index Type Underind OptSpec Strike ExerciseDates AmericanOpt Name Quantity
3 OptBond 2 call 101 01-Jan-2003 NaN Option 101 -50
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.04 01-Jan-2000 01-Jan-2003 1 NaN  NaN 4% Fixed 80
Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN  NaN 20BP Float 8
Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
6 Cap 0.03 01-Jan-2000 01-Jan-2004 1 NaN  NaN 3% Cap 30
Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.03 01-Jan-2000 01-Jan-2004 1 NaN NaN 3% Floor 40
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.06 20] 01-Jan-2000 01-Jan-2003 [1 1] NaN  NaN [Nan] 6%/20BP Swap 10
Index Type CouponRate Settle Maturity Period Basis ... Name Quantity
1 Bond 0.04 01-Jan-2000 01-Jan-2003 1 NaN ... 4% bond 100
2 Bond 0.04 01-Jan-2000 01-Jan-2004 2 NaN ... 4% bond 50

There are eight instruments in this portfolio set: two bonds, one bond option, one fixed-
rate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a
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corresponding index that identifies the instrument prices in the price vector returned by
hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument set.

Price = hjmprice(HIMTree, HJIMInstSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =

98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

Note The warning shown above appears because some of the cash flows for the second
bond do not fall exactly on a tree node.

BDT Pricing Example
Load the MAT-file deriv.mat into the MATLAB workspace.
load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.

whos

Name Size Bytes Class Attributes
BDTInstSet 1x1 15956 struct
BDTTree 1x1 5138 struct
BKInstSet 1x1 15946 struct
BKTree 1x1 5904 struct
CRRINstSet 1x1 12434 struct
CRRTree 1x1 5058 struct
EQPInstSet 1x1 12434 struct
EQPTree 1x1 5058 struct
HIMInstSet 1x1 15948 struct
HIMTree 1x1 5838 struct
HWInstSet 1x1 15946 struct
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HWTree 1x1 5904 struct
ITTInstSet 1x1 12438 struct
ITTTree 1x1 8862 struct
ZerolnstSet 1x1 10282 struct
ZeroRateSpec 1x1 1580 struct

BDTTree and BDT InstSet are the input arguments required to call the function

bdtprice.
Use the function instdisp to examine the set of instruments contained in the variable
BDTInstSet.
instdisp(BDTInstSet)
Index Type CouponRate Settle Maturity Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1 Bond 0.1 01-Jan-2000 01-Jan-2003 1 NaN NaN NaN NaN NaN NaN NaN
2 Bond 0.1 01-Jan-2000 01-Jan-2004 2 NaN NaN NaN NaN NaN NaN NaN
Index Type UnderInd OptSpec Strike ExerciseDates AmericanOpt Name Quantity
3 OptBond 1 call 95 01-Jan-2002 NaN Option 95 -50
Index Type CouponRate Settle Maturity FixedReset Basis Principal Name Quantity
4 Fixed 0.1 01-Jan-2000 01-Jan-2003 1 NaN NaN 10% Fixed 80
Index Type Spread Settle Maturity FloatReset Basis Principal Name Quantity
5 Float 20 01-Jan-2000 01-Jan-2003 1 NaN NaN 20BP Float 8
Index Type Strike Settle Maturity CapReset Basis Principal Name Quantity
6 Cap 0.15 01-Jan-2000 01-Jan-2004 1 NaN NaN 15% Cap 30
Index Type Strike Settle Maturity FloorReset Basis Principal Name Quantity
7 Floor 0.09 01-Jan-2000 01-Jan-2004 1 NaN NaN 9% Floor 40
Index Type LegRate Settle Maturity LegReset Basis Principal LegType Name Quantity
8 Swap [0.15 10] 01-Jan-2000 01-Jan-2003 [1 1] NaN NaN [NaN]  15%/10BP Swap 10

There are eight instruments in this portfolio set: two bonds, one bond option, one fixed-
rate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a
corresponding index that identifies the instrument prices in the price vector returned by
bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument set.

Price = bdtprice(BDTTree, BDTInstSet)

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Price =
95.5030

93.9079
1.7657
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95.5030
100.4865
1.4863
0.0245
7.4222

Price Vector Output

The prices in the output vector Price correspond to the prices at observation time
zero (tObs = 0), which is defined as the valuation date of the interest-rate tree. The
instrument indexing within Price is the same as the indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the instruments in
this order.

InstNames = instget(HIMInstSet, “FieldName~®,*Name®)

InstNames =

4% bond

4% bond
Option 101
4% Fixed
20BP Float
3% Cap

3% Floor
6%/20BP Swap

So, in the Price vector, the fourth element, 98.7159, represents the price of the fourth
instrument (4% fixed-rate note); the sixth element, 6.2831, represents the price of the
sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the instruments in this
order.

InstNames = instget(BDTInstSet, "FieldName®,"Name®)

InstNames

10% Bond
10% Bond
Option 95
10% Fixed
20BP Float
15% Cap

9% Floor
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15%/10BP Swap

So, in the Price vector, the fourth element, 95.5030, represents the price of the fourth
instrument (10% fixed-rate note); the sixth element, 1.4863, represents the price of the
sixth instrument (15% cap).

Price Tree Structure Output

If you call a pricing function with two output arguments, for example,

[Price, PriceTree] = hjmprice(HIMTree, HIMInstSet)
you generate a price tree along with the price information.

The optional output price tree structure PriceTree holds all the pricing information.

HJM Price Tree

In the HJM example, the first field of this structure, FinObj, indicates that this
structure represents a price tree. The second field, PBush, is the tree holding the price
of the instruments in each node of the tree. The third field, AIBush, is the tree holding
the accrued interest of the instruments in each node of the tree. Finally, the fourth field,
tObs, represents the observation time of each level of PBush and Al1Bush, with units in
terms of compounding periods.

In this example, the price tree looks like
PriceTree =

FinObj: “"HJIMPriceTree~

PBush: {[8x1 double] [8x1x2 double] ...[8x8 double]}

AlBush: {[8x1 double] [8x1x2 double] ... [8x8 double]}
tObs: [0 1 2 3 4]

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five observation times
of tObs. The data display has been shortened here to fit on a single line.

Using the command-line interface, you can directly examine PriceTree.PBush, the
field within the PriceTree structure that contains the price tree with the price vectors
at every state. The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PBush{1}

ans =
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98.7159
97.5280
0.0486
98.7159
100.5529
6.2831
0.0486
3.6923

With this interface, you can observe the prices for all instruments in the portfolio at a
specific time.

BDT Price Tree

The BDT output price tree structure PriceTree holds all the pricing information. The
first field of this structure, FinObj, indicates that this structure represents a price
tree. The second field, PTree, is the tree holding the price of the instruments in each
node of the tree. The third field, AlTree, is the tree holding the accrued interest of the
instruments in each node of the tree. The fourth field, tObs, represents the observation
time of each level of PTree and Al Tree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which contains the
price tree with the price vectors at every state. The first node represents tObs = 0,
corresponding to the valuation date.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)

PriceTree.PTree{l}
ans =

95.5030
93.9079
1.7657
95.5030
100.4865
1.4863
0.0245
7.4222

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm
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| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
fixedbybk | Fixedbyhjm | Fixedbyhw | fixedbyzero | floatbybdt | Floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hymprice |
hjmsens | hjmtimespec | hymtree | hjmvolspec | hwcalbycap | hwcalbyfloor

| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Overview of Interest-Rate Tree Models” on page 2-48
“Computing Instrument Sensitivities” on page 2-106
“Graphical Representation of Trees” on page 2-155
“Understanding Interest-Rate Tree Models” on page 2-77
“Understanding the Interest-Rate Term Structure” on page 2-53
“Pricing Using Interest-Rate Term Structure” on page 2-70

More About

“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Sensitivities can be reported either as dollar price changes or percentage price
changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar
sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega sensitivities
of instruments using an interest-rate tree. They also optionally return the calculated
price for each instrument. The sensitivity functions require the same two input
arguments used by the pricing functions (HIJMTree and HIMInstSet for HJM; BDTTree
and BDT InstSet for BDT).

Sensitivity functions calculate the dollar value of delta and gamma by shifting the
observed forward yield curve by 100 basis points in each direction, and the dollar value
of vega by shifting the volatility process by 1%. To obtain the per-dollar value of the
sensitivities, divide the dollar sensitivity by the price of the corresponding instrument.

HJM Sensitivities Example
The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = hjmsens(HIMTree, HIMInstSet)

Use the previous example data to calculate the price of instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HIMTree, HIMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Note The warning appears because some of the cash flows for the second bond do not fall
exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

All = [Delta, Gamma, Vega, Price]

All =
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-272.65 1029.90 0.00 98.72
-347.43 1622.69 -0.04 97.53

-8.08 643.40 34.07 0.05
-272.65 1029.90 0.00 98.72

-1.04 3.31 0 100.55
294.97 6852.56 93.69 6.28
-47.16 8459.99 93.69 0.05
-282.05 1059.68 0.00 3.69

As with the prices, each row of the sensitivity vectors corresponds to the similarly
indexed instrument in HIMInstSet. To view the per-dollar sensitivities, divide each
dollar sensitivity by the corresponding instrument price.

BDT Sensitivities Example
The calling syntax for the function is:
[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);

Arrange the sensitivities and prices into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =
-232.67 803.71 -0.00 95.50
-281.05 1181.93 -0.01 93.91
-50.54 246.02 5.31 1.77
-232.67 803.71 0 95.50
0.84 2.45 0 100.49
78.38 748.98 13.54 1.49
-4.36 382.06 2.50 0.02
-253.23 863.81 0 7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding
Iinstrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =
-2.44 8.42 -0.00 95.50
-2.99 12.59 -0.00 93.91
-28.63 139.34 3.01 1.77
-2.44 8.42 0 95.50
0.01 0.02 0 100.49
52.73 503.92 9.11 1.49
-177.89 15577.42 101.87 0.02
-34.12 116.38 0 7.42
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See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
fixedbybk | Fixedbyhjm | Fixedbyhw | fixedbyzero | floatbybdt | Floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | Floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjmsens | hjmtimespec | hymtree | hymvolspec | hwcalbycap | hwcalbyfloor

| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Overview of Interest-Rate Tree Models” on page 2-48
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Graphical Representation of Trees” on page 2-155
“Understanding Interest-Rate Tree Models” on page 2-77
“Understanding the Interest-Rate Term Structure” on page 2-53

“Pricing Using Interest-Rate Term Structure” on page 2-70

More About

“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Calibrating Hull-White Model Using Market Data

The pricing of interest-rate derivative securities relies on models that describe the
underlying process. These interest rate models depend on one or more parameters that
you must determine by matching the model predictions to the existing data available
in the market. In the Hull-White model, there are two parameters related to the short
rate process: mean reversion and volatility. Calibration is used to determine these
parameters, such that the model can reproduce, as close as possible, the prices of caps
or floors observed in the market. The calibration routines find the parameters that
minimize the difference between the model price predictions and the market prices for
caps and floors.

For a Hull-White model, the minimization is two dimensional, with respect to mean
reversion (a) and volatility (o). That is, calibrating the Hull-White model minimizes the
difference between the model’s predicted prices and the observed market prices of the
corresponding caplets or floorlets.

Hull-White Model Calibration Example

Use market data to identify the implied volatility (0) and mean reversion (a) coefficients
needed to build a Hull-White tree to price an instrument. The ideal case is to use the
volatilities of the caps or floors used to calculate Alpha (a) and Sigma (o). This will most
likely not be the case, so market data must be interpolated to obtain the required values.

Consider a cap with these parameters:

Settle = ° Jan-21-2008";

Maturity = “Mar-21-2011";
Strike = 0.0690;

Reset = 4;

Principal = 1000;

Basis = 0;

The caplets for this example would fall in:

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates")

ans =

21-Mar-2008
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21-Jun-2008
21-Sep-2008
21-Dec-2008
21-Mar-2009
21-Jun-2009
21-Sep-2009
21-Dec-2009
21-Mar-2010
21-Jun-2010
21-Sep-2010
21-Dec-2010
21-Mar-2011

In the best case, look up the market volatilities for caplets with a Strike = 0.0690, and
maturities in each reset date listed, but the likelihood of finding these exact instruments
is low. As a consequence, use data that is available in the market and interpolate to find
appropriate values for the caplets.

Based on the market data, you have the cap information for different dates and strikes.
Assume that instead of having the data for Strike = 0.0690, you have the data for
Strikel =0.0590 and Strike2 =0.0790.

Maturity Strike1 = 0.0590 Strike2 = 0.0790
21-Mar-2008 0.1533 0. 1526
21-Jun-2008 0.1731 0.1730
21-Sep-2008 0. 1727 0.1726
21-Dec-2008 0. 1752 0. 1747
21-Mar-2009 0. 1809 0. 1808
21-Jun-2009 0. 1809 0.1792
21-Sep-2009 0. 1805 0. 1797
21-Dec-2009 0. 1802 0.1794
21-Mar-2010 0. 1802 0.1733
21-Jun-2010 0. 1757 0.1751
21-Sep-2010 0.1755 0. 1750
21-Dec-2010 0. 1755 0.1745
21-Mar-2011 0.1726 0.1719
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The nature of this data lends itself to matrix nomenclature, which is perfect for
MATLAB. hwcalbycap requires that the dates, the strikes, and the actual volatility be
separated into three variables: MarketStrike, MarketMat, and MarketVol.

MarketStrike = [0.0590; 0.0790];
MarketMat = {"21-Mar-2008";
"21-Jun-2008~;
"21-Sep-2008~;
"21-Dec-2008";
"21-Mar-2009";
"21-Jun-2009";
"21-Sep-2009~;
"21-Dec-2009";
"21-Mar-2010~;
"21-Jun-2010~;
"21-Sep-2010~;
"21-Dec-2010";
"21-Mar-2011"};

MarketVol = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802 0.1735 0.1757 ...
0.1755 0.1755 0.1726; % First row in table corresponding to Strikel
0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751 ...
0.1750 0.1745 0.1719]; % Second row in table corresponding to Strike2

Complete the input arguments using this data for RateSpec:

Rates= [0.0627;
.0657;
.0691;
.0717;
.0739;
.0755;
.0765;
.0772;
.0779;
.0783;
.0786;
.0789;
.0792;
.0793];

[eNeoNeoNoNoNoNoNoNoNoNoNoNa]

ValuationDate = "21-Jan-2008";

EndDates = {"21-Mar-2008";"21-Jun-2008";"21-Sep-2008";"21-Dec-2008";...
"21-Mar-20097;"21-Jun-2009"; "21-Sep-2009° ;"21-Dec-2009";....
"21-Mar-20107;"21-Jun-2010";"21-Sep-2010";"21-Dec-2010";....
"21-Mar-2011";"21-Jun-2011"};

Compounding = 4;

Basis = 0;

RateSpec = intenvset("ValuationDate", ValuationDate,
“StartDates”, ValuationDate, “EndDates”, EndDates,
“Rates”, Rates, "Compounding®, Compounding, "Basis®, Basis)

RateSpec =
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FinObj: "RateSpec*
Compounding: 4
Disc: [14x1 double]
Rates: [14x1 double]
EndTimes: [14x1 double]
StartTimes: [14x1 double]
EndDates: [14x1 double]
StartDates: 733428
ValuationDate: 733428
Basis: O
EndMonthRule: 1

Call the calibration routine to find values for volatility parameters Alpha and Sigma

Use hwcalbycap to calculate the values of Alpha and Sigma based on market data.
Internally, hwcalbycap calls the Optimization Toolbox function Isqnonlin. You

can customize Isgnonlin by passing an optimization options structure created by
optimoptions and then this can be passed to hwcalbycap using the name-value pair
argument for OptimOptions. For example, optimoptions defines the target objective
function tolerance as 100*eps and then calls hwcalbycap:

o=optimoptions(“Isgnonlin®,"TolFun",100*eps);

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...
Strike, Settle, Maturity, "Reset”, Reset, "Principal”, Principal, "Basis”,...
Basis, "OptimOptions®, 0)

Local minimum possible.

Isgnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 2.

> In hwcalbycapfloor at 93
In hwcalbycap at 75

Alpha =

1.0000e-06

Sigma =

0.0127

The previous warning indicates that the conversion was not optimal. The search
algorithm used by the Optimization Toolbox™ function Isgnonlin did not find
a solution that conforms to all the constraints. To discern whether the solution
is acceptable, look at the results of the optimization by specifying a third output
(OptimOut) for hwcalbycap:
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[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, "Reset”, Reset, "Principal”, Principal,...
"Basis”, Basis, "OptimOptions®, 0);

The OptimOut.residual field of the OptimOut structure is the optimization residual.
This value contains the difference between the Black caplets and those calculated during
the optimization. You can use the OptimOut. residual value to calculate the percentual
difference (error) compared to Black caplet prices and then decide whether the residual

is acceptable. There is almost always some residual, so decide if it is acceptable to
parameterize the market with a single value of Alpha and Sigma.

Price caplets using market data and Black's formula to obtain reference caplet values

To determine the effectiveness of the optimization, calculate reference caplet values
using Black’s formula and the market data. Note, you must first interpolate the market
data to obtain the caplets for calculation:

MarketMatNum = datenum(MarketMat);

[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
Flatvol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, “spline”);

Compute the price of the cap using the Black model:

[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, Flatvol,...
“Reset”, Reset, "Basis”, Basis, "Principal”, Principal);
Caplets = Caplets(2:end)";

Caplets =

-3210
.6355
-4863
-1903
-4110
.2685
.2385
-4803
.2419
-1949
-2991
-3750

WWWWWWWwwWwwNEFRO

Compare optimized values and Black values and display graphically

After calculating the reference values for the caplets, compare the values, analytically
and graphically, to determine whether the calculated single values of Alpha and Sigma
provide an adequate approximation:
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OptimCaplets = Caplets+OptimOut.residual;

disp(" )3
disp(” Black76 Calibrated Caplets®);
disp([Caplets OptimCaplets])

plot(MarketMatNum(2:end), Caplets, “or", MarketMatNum(2:end), OptimCaplets, "*b");
datetick("x", 2)

xlabel ("Caplet Maturity®);

ylabel ("Caplet Price”);

title("Black and Calibrated Caplets™);

h = legend("Black Caplets®, "Calibrated Caplets®);

set(h, “color®, [0.9 0.9 0.9]);

set(h, “Location®, "SouthEast®");

set(gcf, “NumberTitle®, "off")

grid on

Black76 Calibrated Caplets
0.3210 0.3636
1.6355 1.6603
2.4863 2.4974
3.1903 3.1874
3.4110 3.4040
3.2685 3.2639
3.2385 3.2364
3.4803 3.4683
3.2419 3.2408
3.1949 3.1957
3.2991 3.2960
3.3750 3.3663
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Compare cap prices using the Black, HW analytical, and HW tree models

Using the calculated caplet values, compare the prices of the corresponding cap using
the Black model, Hull-White analytical, and Hull-White tree models. To calculate a Hull-
White tree based on Alpha and Sigma, use these calibration routines:

+ Black model:

CapPriceBLK = CapPrice;
*  HW analytical model:
CapPriceHWAnalytical = sum(OptimCaplets);

+ HW tree model to price the cap derived from the calibration process:

1 Create VolSpec from the calibration parameters Alpha and Sigma:

VolDates EndDates;

VolCurve = Sigma*ones(14,1);

AlphaDates = EndDates;

AlphaCurve = Alpha*ones(14,1);

HWolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,AlphaDates, AlphaCurve);

2 Create the TimeSpec:
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HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);
3 Build the HW tree using the HV2000 method:

HWTree = hwtree(HWolSpec, RateSpec, HWTimeSpec, "Method®, "HW20007);
4  Price the cap:

Price = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal);

disp(*  ");

disp([* CapPrice Black76 ..................:2 ", num2str(CapPriceBLK, "%15.5F")]);
disp([* CapPrice HW analytical..........: *, num2str(CapPriceHWAnalytical, "%15.5F")]);
disp([* CapPrice HW from capbyhw ..: *, num2str(Price, "%15.5F")]);

disp(" ");

CapPrice Black76 ..........: 34.14220

CapPrice HW analytical.....: 34.18008

CapPrice HW from capbyhw ..: 34.14192

Price a portfolio of instruments using the calibrated HW tree

After building a Hull-White tree, based on parameters calibrated from market data, use
HWTree to price a portfolio of these instruments:

+ Two bonds
CouponRate = [0.07; 0.09];

Settle= ° Jan-21-2008";
Maturity = {"Mar-21-2010";"Mar-21-2011"}%};

Period = 1;
Face = 1000;
Basis = 0;

* Bond with an embedded American call option

CouponRateOEB = 0.08;

SettleOEB = " Jan-21-2008";
MaturityOEB = "Mar-21-2011"7;
OptSpec = “call”;

StrikeOEB = 950;

ExerciseDatesOEB = "Mar-21-2011";
AmericanOpt= 1;

Period =1;
Face = 1000;
Basis =0;

To price this portfolio of instruments using the calibrated HWTree:
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1 Use instadd to create the portfolio InstSet:

InstSet = instadd("Bond", CouponRate, Settle, Maturity, Period, Basis, [1, [1., [1. [1. [1., Face);
InstSet = instadd(InstSet, "OptEmBond”, CouponRateOEB, SettleOEB, MaturityOEB, OptSpec,...
StrikeOEB, ExerciseDatesOEB, "AmericanOpt®, AmericanOpt, “Period”, Period,...

“Face” ,Face, "Basis", Basis);

2 Add the cap instrument used in the calibration:
SettleCap = * Jan-21-2008";
MaturityCap = “"Mar-21-2011";
StrikeCap = 0.0690;

Reset = 4;
Principal = 1000;

InstSet = instadd(InstSet,"Cap”, StrikeCap, SettleCap, MaturityCap, Reset, Basis, Principal);
3  Assign names to the portfolio instruments:

Names = {"7% Bond"; "8% Bond"; "BondEmbCall®; "6.9% Cap“};
InstSet = instsetfield(InstSet, "Index”,1:4, “FieldName®, {"Name®}, "Data”, Names );

4 Examine the set of instruments contained in InstSet:

instdisp(InstSet)

1dxType CoupRate Settle Mature Period Basis EOMRule IssueDate 1stCoupDate LastCoupDate StartDate Face Name
1 Bond 0.07 21-Jan-2008 21-Mar-2010 1 0 NaN NaN NaN NaN NaN 1000 7% Bond

2 Bond 0.09 21-Jan-2008 21-Mar-2011 1 0 NaN NaN NaN NaN NaN 1000 8% Bond

1dxType CoupRate Settle Mature OptSpec Stke ExDate Per Basis EOMRule IssDate l1stCoupDate LstCoupDate StrtDate Face Al
3 OptEmBond 0.08 21-Jan-2008 21-Mar-2011 call 950 21-Jan-2008 21-Mar-2011 1 O 1 NaN NaN NaN NaN 1000 1 Bond

Index Type Strike Settle Maturity CapReset Basis Principal Name
4 Cap 0.069 21-Jan-2008 21-Mar-2011 4 0 1000 6.9% Cap

5 Use hwprice to price the portfolio using the calibrated HWTree:

format bank
PricePortfolio = hwprice(HWTree, InstSet)

PricePortfolio =
980.45
1023.05
945.73
34.14

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
fixedbybk | Fixedbyhjm | Fixedbyhw | Fixedbyzero | floatbybdt | Floatbybk
| fFloatbyhjm | Floatbyhw | Floatbyzero | floatdiscmargin | floatmargin |
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floorbybdt | floorbybk | Floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjmsens | hjmtimespec | hymtree | hymvolspec | hwcalbycap | hwcalbyfloor
| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
“Overview of Interest-Rate Tree Models” on page 2-48
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Graphical Representation of Trees” on page 2-155
“Understanding Interest-Rate Tree Models” on page 2-77
“Understanding the Interest-Rate Term Structure” on page 2-53

“Pricing Using Interest-Rate Term Structure” on page 2-70

More About

“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Interest-Rate Derivatives Using Closed-Form Solutions

Pricing Caps and Floors Using the Black Option Model

Caps and floors are contracts that allow the holder to be protected if interest rates rise
or decrease. The Black model uses a forward price as an underlier in place of a spot

price. The assumption is that the forward price at maturity of the option is log-normally
distributed.

Closed-form solutions for pricing caps and floors using the Black model support the
following tasks:

Task Function

Price the interest rate caps using the Black option |capbyblk
pricing model.

Price the interest rate floors using the Black option |floorbyblk
pricing model.

See Also

agencyoas | agencyprice | blackvolbyrebonato | blackvolbysabr |
bndfutimprepo | bndfutprice | capbyblk | capbylg2f | convfactor |
Ffloorbyblk | Floorbylg2f | hwcalbycap | hwcalbyfloor | optsensbysabr |
swaptionbyblk | swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo
| tFutpricebyrepo | tfutyieldbyrepo

Related Examples
“Calibrate the SABR Model ” on page 2-34
“Price a Swaption Using the SABR Model” on page 2-40
“Computing the Agency OAS for Bonds” on page 6-3
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures” on page 7-17
“Fitting the Diebold Li Model” on page 7-25
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-121

“Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-139
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More About

“Managing Present Value with Bond Futures” on page 7-16

“Supported Interest-Rate Instruments” on page 2-2

. “Supported Equity Derivatives” on page 3-24

“Supported Energy Derivatives” on page 3-41
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Price Swaptions with Interest-Rate Models Using Simulation

In this section...

“Introduction” on page 2-121

“Construct Zero Curve” on page 2-122

“Define Swaption Parameters” on page 2-124

“Compute the Black Model and the Swaption Volatility Matrix” on page 2-124
“Select Calibration Instruments” on page 2-124

“Compute Swaption Prices Using Black's Model” on page 2-125

“Define Simulation Parameters” on page 2-125

“Simulate Interest-Rate Paths Using the Hull-White One-Factor Model” on page
2-126

“Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model” on page
2-129

“Simulate Interest-Rate Paths Using the LIBOR Market Model” on page 2-132
“Compare Interest-Rate Modeling Results ” on page 2-137

“References” on page 2-138

Introduction

This example shows how to price European swaptions using interest-rate models in
Financial Instruments Toolbox. Specifically, a Hull-White one factor model, a Linear
Gaussian two-factor model, and a LIBOR Market Model are calibrated to market data
and then used to generate interest-rate paths using Monte Carlo simulation.

The following sections set up the data that is then used with examples for “Simulate
Interest-Rate Paths Using the Hull-White One-Factor Model” on page 2-126, “Simulate
Interest-Rate Paths Using the Linear Gaussian Two-Factor Model” on page 2-129, and
“Simulate Interest-Rate Paths Using the LIBOR Market Model” on page 2-132:

+ “Construct Zero Curve” on page 2-122

* “Define Swaption Parameters” on page 2-124

+ “Compute the Black Model and the Swaption Volatility Matrix” on page 2-124

+ “Select Calibration Instruments” on page 2-124
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+ “Compute Swaption Prices Using Black's Model” on page 2-125

* “Define Simulation Parameters” on page 2-125

Construct Zero Curve

This example shows how to use ZeroRates for a zero curve that is hard-coded. You can
also create a zero curve by bootstrapping the zero curve from market data (for example,
deposits, futures/forwards, and swaps)

The hard-coded data for the zero curve is defined as:
Settle = datenum("21-Jul-2008%);

% Zero Curve
CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]"/100;

plot(CurveDates,ZeroRates)
datetick
title(["Zero Curve for " datestr(Settle)]);
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Construct an 1RCurve object.

irdc = IRDataCurve("Zero",Settle,CurveDates,ZeroRates);

Construct the RateSpec.

RateSpec = intenvset("Rates”,ZeroRates, "EndDates”,CurveDates, "StartDate”,Settle)
RateSpec = struct with fields:
FinObj: "RateSpec*
Compounding: 2
Disc: [6%x1 double]
Rates: [6%x1 double]
EndTimes: [6%x1 double]
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StartTimes: [6x1 double]
EndDates: [6x1 double]
StartDates: 733610
ValuationDate: 733610
Basis: O
EndMonthRule: 1

Define Swaption Parameters

While Monte Carlo simulation is typically used to value more sophisticated derivatives
(for example, Bermudan swaptions), in this example, the price of a European swaption is
computed with an exercise date of five years and an underlying swap of five years.
InstrumentExerciseDate = datenum("21-Jul-2013%);

InstrumentMaturity = datenum("21-Jul-2018%);
InstrumentStrike = .045;

Compute the Black Model and the Swaption Volatility Matrix

Black's model is often used to price and quote European exercise interest-rate options,
that is, caps, floors and swaptions. In the case of swaptions, Black's model is used

to imply a volatility given the current observed market price. The following matrix
shows the Black implied volatility for a range of swaption exercise dates (columns) and
underlying swap maturities (rows).

SwaptionBlackvVol = [22 21 19 17 15 13 12
21 19 17 16 15 13 11
20 18 16 15 14 12 11
19 17 15 14 13 12 10
18 16 14 13 12 11 10
15 14 13 12 12 11 10
13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];

EurExDatesFull = repmat(daysadd(Settle,ExerciseDates*360,1)",...
length(Tenors),1);

EurMatFull = reshape(daysadd(EurExDatesFull, ...
repmat(360*Tenors, 1, length(ExerciseDates)),1),size(EurExDatesFull));

Select Calibration Instruments

Selecting the instruments to calibrate the model to is one of the tasks in calibration.
For Bermudan swaptions, it is typical to calibrate to European swaptions that are co-
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terminal with the Bermudan swaption to be priced. In this case, all swaptions having
an underlying tenor that matures before the maturity of the swaption to be priced (21-
Jul-2018) are used in the calibration.

% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= InstrumentMaturity);

Compute Swaption Prices Using Black's Model

This example shows how to compute swaption prices using Black's Model. The swaption
prices are then used to compare the model’s predicted values that are obtained from the
calibration process.

To compute the swaption prices using Black's model:

SwaptionBlackPrices = zeros(size(SwaptionBlackVvol));
SwaptionStrike = zeros(size(SwaptionBlackVol));

for iSwaption=1:length(ExerciseDates)
for iTenor=1:length(Tenors)
[~.SwaptionStrike(iTenor, iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, EurMatFull(iTenor,iSwaption),...
“StartDate” ,EurExDatesFul I (iTenor, iSwaption), "LegReset”,[1 1]);

SwaptionBlackPrices(iTenor, iSwaption) = swaptionbyblk(RateSpec, “call”, SwaptionStrike(iTenor, iSwaption),Settle, .

EurExDatesFull (iTenor, iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBlackVol(iTenor,iSwaption));
end
end

Define Simulation Parameters

This example shows how to use the simTermStructs method with Hul lWhitelF,
LinearGaussian2F, and LiborMarketModel objects.

To demonstrate using the simTermStructs method with Hul IWhitelF,
LinearGaussian2F, and LiborMarketModel objects, use the following simulation
parameters:

nPeriods = 5;

DeltaTime = 1;
nTrials = 1000;

Tenor = (1:10)";

SimDates
SimTimes

aysadd(Settle,360*DeltaTime*(0:nPeriods),1)

=d
= diff(yearfrac(SimDates(1l),SimDates))

% For 1 year periods and an evenly spaced tenor, the exercise row will be
% the 5th row and the swaption maturity will be the 5th column
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exRow = 5;
endCol = 5;

SimDates =

733610
733975
734340
734705
735071
735436

SimTimes =

-0000
0000
-0000
.0027
-0000

RPRRRR

Simulate Interest-Rate Paths Using the Hull-White One-Factor Model

This example shows how to simulate interest-rate paths using the Hull-White one-factor
model. Before beginning this example that uses a Hul IWhitelF model, make sure that
you have set up the data as described in:

+ “Construct Zero Curve” on page 2-122

+ “Define Swaption Parameters” on page 2-124

+ “Compute the Black Model and the Swaption Volatility Matrix” on page 2-124
+ “Select Calibration Instruments” on page 2-124

+ “Compute Swaption Prices Using Black's Model” on page 2-125

*  “Define Simulation Parameters” on page 2-125

The Hull-White one-factor model describes the evolution of the short rate and is specified
using the zero curve, alpha, and sigma parameters for the equation

dr =[0(t) —a(®)rldt + oc()dW

where:
dr is the change in the short-term interest rate over a small interval, dt.

r 1s the short-term interest rate.
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O(t) is a function of time determining the average direction in which r moves, chosen
such that movements in r are consistent with today's zero coupon yield curve.

a is the mean reversion rate.

dt is a small change in time.

o0 is the annual standard deviation of the short rate.
W is the Brownian motion.

The Hull-White model is calibrated using the function swaptionbyhw, which constructs
a trinomial tree to price the swaptions. Calibration consists of minimizing the difference
between the observed market prices (computed above using the Black's implied swaption
volatility matrix, see “Compute the Black Model and the Swaption Volatility Matrix” on

page 2-124) and the model’s predicted prices.

In this example, the Optimization Toolbox function Isgnonlin is used to find the
parameter set that minimizes the difference between the observed and predicted values.
However, other approaches (for example, simulated annealing) may be appropriate.
Starting parameters and constraints for ¢ and o are set in the variables X0, Ib, and ub;
these could also be varied depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and
predicted values using swaptionbyhw and Isgnonlin.

TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...

swaptionbyhw(hwtree(hwvolspec(Settle, "11-Aug-20157,x(2), “11-Aug-20157,x(1)), RateSpec, TimeSpec), “call”,

EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset(“disp”, “iter”, “MaxFunEvals®,1000, "“TolFun*,le-5);

% Find the parameters that minimize the difference between the observed and
% predicted prices

x0 = [.1 .01];

Ib = [0 0];

ub = [1 1];

HW1Fparams = Isqgnonlin(HW1Fobjfun,x0,lb,ub,options);

HW_alpha = HW1Fparams(1)

HW_sigma = HW1lFparams(2)

Norm of First-order
Iteration Func-count fx) step optimality

0 3 0.953772 20.5
1 6 0.142828 0.0169199 1.53
2 9 0.123022 0.0146705 2.31
3 12 0.122222 0.0154098 0.482
4 15 0.122217 0.00131297 0.00409
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Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

HW_alpha =

0.0967

HW_sigma =

0.0088

Construct the Hul IWhitelF model using the Hul IWhitelF constructor.

HW1F

Hul IWhitelF(RateSpec,HW_alpha,HW_sigma)

HW1F

HullWhitelF with properties:

ZeroCurve: [1x1 IRDataCurve]
Alpha: @(t,V)inAlpha
Sigma: @(t,V)inSigma

Use Monte Carlo simulation to generate the interest-rate paths with
HullWhitelF._.simTermStructs.

HW1FSimPaths = HW1F._.simTermStructs(nPeriods, "NTRIALS" ,nTrials, . ..
“DeltaTime",DeltaTime, "Tenor",Tenor, "antithetic”,true);

trialldx = 1;

figure

surf(Tenor,SimDates,HW1FSimPaths(:, -, trialldx))

datetick y keepticks keeplimits

title(["Evolution of the Zero Curve for Trial:" num2str(trialldx) * of Hull White Model"])

xlabel ("Tenor (Years)")
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Price the European swaption.

DF = exp(bsxfun(@times,-HW1FSimPaths, repmat(Tenor*",[nPeriods+1l 1])));

SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));

Payoffvalue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));

RealizedDF = prod(exp(bsxfun(@times,-HW1FSimPaths(1l:exRow,1,:),SimTimes(1l:exRow))),1);
HW1F_SwaptionPrice = mean(Real izedDF.*PayoffVvalue)

HW1F_SwaptionPrice =

2.1839

Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model

This example shows how to simulate interest-rate paths using the Linear Gaussian two-
factor model. Before beginning this example that uses a LinearGaussian2F model,
make sure that you have set up the data as described in:

+ “Construct Zero Curve” on page 2-122
* “Define Swaption Parameters” on page 2-124

* “Compute the Black Model and the Swaption Volatility Matrix” on page 2-124
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+ “Select Calibration Instruments” on page 2-124
+ “Compute Swaption Prices Using Black's Model” on page 2-125

* “Define Simulation Parameters” on page 2-125

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio, see
“Interest-Rate Modeling Using Monte Carlo Simulation” on page C-12) is also a short
rate model, but involves two factors. Specifically:

r@) = x(t) + y(&) + o)

dx(t) = —a(H)x()dt + o()dW;(¢),x(0) =0

dy(t) = -b(t)y(t)dt +nt)dWy(t), y(0) = 0

where dW;@)dWy(¢) = pd? is a two-dimensional Brownian motion with correlation p, and
¢ is a function chosen to match the initial zero curve.

The function swaptionbylg2f is used to compute analytic values of the swaption price
for model parameters, and consequently can be used to calibrate the model. Calibration
consists of minimizing the difference between the observed market prices (computed
above using the Black's implied swaption volatility matrix, see “Compute the Black
Model and the Swaption Volatility Matrix” on page 2-124) and the model’s predicted
prices.

In this example, the approach is similar to “Simulate Interest-Rate Paths Using the
Hull-White One-Factor Model” on page 2-126 and the Optimization Toolbox function
Isgnonlin is used to minimize the difference between the observed swaption prices
and the predicted swaption prices. However, other approaches (for example, simulated
annealing) may also be appropriate. Starting parameters and constraints for a, b, 5, p,
and o are set in the variables X0, Ib, and ub; these could also be varied depending upon
the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and
predicted values using swaptionbylg2f and Isgnonlin.

G2PPobjfun = @(x) SwaptionBlackPrices(relidx) - swaptionbylg2f(irdc,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx), ...
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EurExDatesFull (relidx),EurMatFul I (relidx), “Reset”,1);

options = optimset(“disp”, "iter", "MaxFunEvals®,1000, "TolFun®,le-5);

x0 = [.2 .1 .02 .01 -.5];
Ib = [000 0 -1];
ub = [11111];

LG2Fparams = Isgnonlin(G2PPobjfun,x0, Ib,ub,options)

Iteration Func-count

0 6
1 12
2 18
3 24
4 30
5 36
6 42
7 48
8 54
9 60
10 66
11 72
12 78
13 84
14 90
15 96
16 102
17 108
18 114

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

LG2Fparams =

0.5752 0.1181

F(x)
12.3547
1.37984
1.37984

0.445202

0.236746

0.134678

.0398816

0287731

.0273025

.0241689

0241689

.0239103

.0234246

.0234246

0.023304

0.0231931

0.0230898

0.0230898
0.023083

[eleoNeololoNoNole)

0.0146

Norm of
step

0.0979743
0.112847
0.0282118
0.0564236
0.0843366
0.015084
0.038967
0.112847
0.213033
0.125602
0.0314005
0.0286685
0.0491135
0.0122784
0.0245568
0.00785421
0.0245568
0.00613919

0.0119 -0.7895

First-order
optimality

Create the G2PP object and use Monte Carlo simulation to generate the interest-rate
paths with LinearGaussian2F.simTermStructs.

LG2f_a = LG2Fparams(1l);
LG2f_b = LG2Fparams(2);

LG2f_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);

G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f_eta,LG2f_rho);

G2PPSimPaths = G2PP.simTermStructs(nPeriods, "NTRIALS" ,nTrials, ...

“DeltaTime",DeltaTime, "Tenor",Tenor, "antithetic”,true);

trialldx = 1;
figure

surf(Tenor,SimDates,G2PPSimPaths(:, -, trialldx))
datetick y keepticks keeplimits

title(["Evolution of the Zero Curve for Trial:" num2str(trialldx) * of G2++ Model"])

xlabel ("Tenor (Years)")
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Price the European swaption.

DF = exp(bsxfun(@times,-G2PPSimPaths, repmat(Tenor”, [nPeriods+1l 1])));

SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1l:endCol,:)));

Payoffvalue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));

RealizedDF = prod(exp(bsxfun(@times,-G2PPSimPaths(l1:exRow,1,:),SimTimes(l:exRow))),1);
G2PP_SwaptionPrice = mean(RealizedDF.*PayoffValue)

G2PP_SwaptionPrice =

2.0988

Simulate Interest-Rate Paths Using the LIBOR Market Model

This example shows how to simulate interest-rate paths using the LIBOR market model.
Before beginning this example that uses a LiborMarketModel, make sure that you have
set up the data as described in:

+  “Construct Zero Curve” on page 2-122

* “Define Swaption Parameters” on page 2-124

+ “Compute the Black Model and the Swaption Volatility Matrix” on page 2-124
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+ “Select Calibration Instruments” on page 2-124
+ “Compute Swaption Prices Using Black's Model” on page 2-125

* “Define Simulation Parameters” on page 2-125

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of
discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion
equation for each forward rate

T =—w;dt+ o;()dW;

12

dF(t)

where:

W is an N-dimensional geometric Brownian motion with

AW, )dW; (&) = p;j

The LMM relates the drifts of the forward rates based on no-arbitrage arguments.
Specifically, under the Spot LIBOR measure, the drifts are expressed as

7ip; j0;(OF;(2)

JJ

Jj=q(t)
where:
7; is the time fraction associated with the ith forward rate
q(t) is an index defined by the relation

T,

g1 <t <Ty)

and the Spot LIBOR numeraire is defined as
q(t)-1
B(t) =P, Ty [ A+7,F,(T,)
n=0
The choice with the LMM is how to model volatility and correlation and how to estimate

the parameters of these models for volatility and correlation. In practice, you may use a
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combination of historical data (for example, observed correlation between forward rates)
and current market data. For this example, only swaption data is used. Further, many
different parameterizations of the volatility and correlation exist. For this example, two
relatively straightforward parameterizations are used.

One of the most popular functional forms in the literature for volatility is:
0;)=:(a(T, )+ b)e’ T 1. d

where ¢ adjusts the curve to match the volatility for the i th forward rate. For this
example, all of the ¢’s are taken to be 1. For the correlation, the following functional form
1s used:

pij = o Pli-il

Once the functional forms have been specified, these parameters must be estimated
using market data. One useful approximation, initially developed by Rebonato, is the
following, which relates the Black volatility for a European swaption, given a set of
volatility functions and a correlation matrix

B w.(0w(0)F.(0)F(0)p; : L«
(ULFM)2 _ 2 wl( )wJ( ) L( )ZJ( )Pl,J JO’i(t)O'j(t)dt
b i j—a+l Sg,3(0) 0
where:
P 71 ( (X )

B
Y, 7 Pt,)

k=a+1

This calculation is done using the function blackvolbyrebonato to compute analytic
values of the swaption price for model parameters, and consequently, is then used

to calibrate the model. Calibration consists of minimizing the difference between the
observed implied swaption Black volatilities and the predicted Black volatilities.

In this example, the approach is similar to “Simulate Interest-Rate Paths Using the Hull-
White One-Factor Model” on page 2-126 and “Simulate Interest-Rate Paths Using the
Linear Gaussian Two-Factor Model” on page 2-129 where the Optimization Toolbox
function Isgnonlin is used to minimize the difference between the observed swaption
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prices and the predicted swaption prices. However, other approaches (for example,

simulated annealing) may also be appropriate. Starting parameters and constraints for
a, b, d, and S are set in the variables X0, Ib, and ub; these could also be varied depending

upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and

predicted values using blackvolbyrebonato and Isgnonlin.
nRates = 10;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));

objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec, ...

repmat({@(t) ones(size(t)).*(x(1)*t + x(2))-*exp(-x(3)*t) + x(4)},nRates-1,1),...

CorrFunc(meshgrid(l:nRates-1)",meshgrid(1:nRates-1),x(5)),.- -
EurExDatesFull (relidx),EurMatFull(relidx), “Period”,1);

options = optimset(“disp”, “iter”, "MaxFunEvals®,1000, "TolFun*,le-5);

x0 = [.2 .05 1 .05 .2];

Ib = [00 .50 .01];

ub =112 .3 1];

LMMparams = Isgnonlin(objfun,x0,lb,ub,options)

Norm of First-order
Iteration Func-count fx) step optimality

0 6 0.156251 0.483
1 12 0.00870177 0.188164 0.0339
2 18 0.00463441 0.165527 0.00095
3 24 0.00331055 0.351017 0.0154
4 30 0.00294775 0.0892617 7.47e-05
5 36 0.00281565 0.385779 0.00917
6 42 0.00278988 0.0145632 4_15e-05
7 48 0.00278522 0.115042 0.00116

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

LMMparams =

0.0781 0.1656 0.5121 0.0617 0.0100

Calculate VolFunc for the LMM object.

= LMMparams(1);
= LMMparams(2);
= LMMparams(3);
= LMMparams(4);

00w

Beta = LMMparams(5);

VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);

Plot the volatility function.

figure
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fplot(VolFunc{1}, [0 20])
title("Volatility Function®)

CorrelationMatrix = CorrFunc(meshgrid(l:nRates-1)",meshgrid(l:nRates-1),Beta);

4 Figure 1 =0 ESH =
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Inspect the correlation matrix.

disp(“Correlation Matrix®)
fprintf([repmat("%1.3f ",1,length(CorrelationMatrix)) " \n"],CorrelationMatrix)

Correlation Matrix

1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932
0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951
0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980
0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990
0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000

Create the LMM object and use Monte Carlo simulation to generate the interest-rate paths
with LiborMarketModel .simTermStructs.

LMM = LiborMarketModel (irdc,VolFunc,CorrelationMatrix, “Period”,1);

[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods, "nTrials”,nTrials);
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trialldx = 1;

figure

tmpPlotData = LMMZeroRates(:,:,trialldx);

tmpPlotData(tmpPlotData == 0) = NaN;

surf(Tenor,SimDates, tmpPlotData)

title(["Evolution of the Zero Curve for Trial:" num2str(trialldx) * of LIBOR Market Model®])
xlabel ("Tenor (Years)®)

zl Figurel EI
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Price the European swaption.

DF = exp(bsxfun(@times,-LMMZeroRates, repmat(Tenor”, [nPeriods+1 1])));

SwapRate = (1 - DF(exRow,endCol, :))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));

Payoffvalue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-LMMZeroRates(2:exRow+1,1,:),SimTimes(l:exRow))),1);
LMM_SwaptionPrice = mean(RealizedDF.*Payoffvalue)

LMM_SwaptionPrice =

1.9915

Compare Interest-Rate Modeling Results

This example shows how to compare the results for pricing a European swaption with
different interest-rate models.
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Compare the results for pricing a European swaption with interest-rate models using
Monte Carlo simulation.

disp(" 7)
fprintf(” # of Monte Carlo Trials: %8d\n* , nTrials)
fprintf(” # of Time Periods/Trial: %8d\n\n" , nPeriods)

fprintf("HW1F European Swaption Price: %8.4f\n", HW1F_SwaptionPrice)
fprintf("LG2F Europesn Swaption Price: %8.4f\n", G2PP_SwaptionPrice)
fprintf(" LMM European Swaption Price: %8.4f\n", LMM_SwaptionPrice)

# of Monte Carlo Trials: 1000
# of Time Periods/Trial: 5

HW1F European Swaption Price: 2.1839

LG2F Europesn Swaption Price: 2.0988
LMM European Swaption Price: 1.9915
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See Also

HullWhitelF | LinearGaussian2F | LiborMarketModel | HullWhitelF.simTermStructs
| LinearGaussian2F.simTermStructs | LiborMarketModel.simTermStructs |
blackvolbyrebonato | capbylg2f | floorbylg2f | Isgnonlin | swaptionbyhw |
swaptionbylg2f

Related Examples

. “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-139
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Pricing Bermudan Swaptions with Monte Carlo Simulation

This example shows how to price Bermudan swaptions using interest-rate models in
Financial Instruments Toolbox™. Specifically, a Hull-White one factor model, a Linear
Gaussian two-factor model, and a LIBOR Market Model are calibrated to market data
and then used to generate interest-rate paths using Monte Carlo simulation.

Zero Curve

In this example, the ZeroRates for a zero curve is hard-coded. You can also create a zero
curve by bootstrapping the zero curve from market data (for example, deposits, futures/
forwards, and swaps). The hard-coded data for the zero curve is defined as:

Settle = datenum("21-Jul-2008%);

% Zero Curve

CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]"/100;
plot(CurveDates,ZeroRates)

datetick
title(["Zero Curve for " datestr(Settle)]);
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RateSpec =
Define Swaption Parameters

For this example, we compute the price of a 10-no-call-1 Bermudan swaption.

BermudanExerciseDates = daysadd(Settle,360*(1:9),1);
BermudanMaturity = datenum(®21-Jul-2018%);
BermudanStrike = .045;

Black's Model and the Swaption Volatility Matrix

Black's model is often used to price and quote European exercise interest-rate options,
that is, caps, floors and swaptions. In the case of swaptions, Black's model is used
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to imply a volatility given the current observed market price. The following matrix
shows the Black implied volatility for a range of swaption exercise dates (columns) and
underlying swap maturities (rows).

SwaptionBlackvol = [22 21 19 17 15 13 12
21 19 17 16 15 13 11
20 18 16 15 14 12 11
19 17 15 14 13 12 10
18 16 14 13 12 11 10
15 14 13 12 12 11 10
13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];

EurExDatesFull = repmat(daysadd(Settle,ExerciseDates*360,1)", ...
length(Tenors),1);

EurMatFull = reshape(daysadd(EurExDatesFull, . ..
repmat(360*Tenors, 1, length(ExerciseDates)),1),size(EurExDatesFull));

Selecting the Calibration Instruments

Selecting the instruments to calibrate the model to is one of the tasks in calibration.

For Bermudan swaptions, it is typical to calibrate to European swaptions that are co-
terminal with the Bermudan swaption to be priced. In this case, all swaptions having an
underlying tenor that matures before the maturity of the swaption to be priced are used
in the calibration.

% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= BermudanMaturity);

Compute Swaption Prices Using Black's Model

Swaption prices are computed using Black's Model. The swaption prices are then used
to compare the model's predicted values. To compute the swaption prices using Black's
model:

% Compute Swaption Prices using Black®s model
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));

for iSwaption=1:length(ExerciseDates)
for iTenor=1:length(Tenors)

[~,SwaptionStrike(iTenor, iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, Eul

2-141



2 Interest-Rate Derivatives

2-142

"StartDate” ,EurExDatesFull (iTenor, iSwaption), "LegReset”,[1 1]);
SwaptionBlackPrices(iTenor, iSwaption) = swaptionbyblk(RateSpec, “call”, Swapti
EurExDatesFull (iTenor, iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBl:
end
end

Simulation Parameters

The following parameters will be used; each exercise date is a simulation date.
nPeriods = 9;

DeltaTime = 1;

nTrials = 1000;

Tenor = (1:10)";

SimDates
SimTimes

daysadd(Settle,360*DeltaTime*(0:nPeriods),1);
diff(yearfrac(SimDates(1),SimDates));

Hull White 1 Factor Model

The Hull-White one-factor model describes the evolution of the short rate and is specified
by the following:

dr = |8(t) - ar |dt + odW

The Hull-White model is calibrated using the function swaptionbyhw, which constructs
a trinomial tree to price the swaptions. Calibration consists of minimizing the difference
between the observed market prices (computed above using the Black's implied swaption
volatility matrix) and the model's predicted prices.

In this example, the Optimization Toolbox™ function Isgnonlin is used to find the
parameter set that minimizes the difference between the observed and predicted values.
However, other approaches (for example, simulated annealing) may be appropriate.

Starting parameters and constraints for ® and ¥ are set in the variables X0 , Ib, and
ub; these could also be varied depending upon the particular calibration approach.

TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);

HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...
swaptionbyhw(hwtree(hwvolspec(Settle, "11-Aug-2015",x(2), "11-Aug-2015*,x(1)), RateS
EurExDatesFull (relidx), O, EurExDatesFull(relidx), EurMatFull(relidx));

options = optimset(“disp”, "iter”, "MaxFunEvals®,1000, "TolFun®,le-5);
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% Find the parameters that minimize the difference between the observed and
% predicted prices

x0 = [.1 .01];
Ib = [0 0];
ub = [1 17;
HW1lFparams = Isgnonlin(HW1Fobjfun,x0,lb,ub,options);
Norm of First-order
Iteration Func-count (X)) step optimality
0 3 0.953772 20.5
1 6 0.142828 0.0169199 1.53
2 9 0.123022 0.0146705 2.31
3 12 0.122222 0.0154097 0.481
4 15 0.122217 0.00131294 0.00409

Local minimum possible.
Isgnonlin stopped because the final change in the sum of squares relative to

its initial value is less than the selected value of the function tolerance.

HW_alpha
HW_sigma

= HWlFparams(1);

= HWlFparams(2);

% Construct the HullWhitelF model using the HullWhitelF constructor.
HW1F = HullWhitelF(RateSpec,HW_alpha,HW_sigma);

% Use Monte Carlo simulation to generate the interest-rate paths with

% HullWhitelF.simTermStructs.

HW1FSimPaths = HW1F.simTermStructs(nPeriods, "NTRIALS" ,nTrials, ...
"DeltaTime”,DeltaTime, "Tenor” ,Tenor, "antithetic”,true);

% Examine one simulation

trialldx = 1;

figure

surf(Tenor,SimDates,HW1FSimPaths(:, -, trialldx))

datetick y keepticks keeplimits

title(["Evolution of the Zero Curve for Trial:" num2str(trialldx) * of Hull White Mode
xlabel ("Tenor (Years)®)
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Evolution of the Zero Curve for Trial:1 of Hull White Model
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% Price the swaption using the helper function hBermudanSwaption

HW1FBermPrice = hBermudanSwaption(HW1FSimPaths,SimDates,Tenor,BermudanStrike, ...

BermudanExerciseDates,BermudanMaturity);

Linear Gaussian 2 Factor Model

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio) is also a
short rate model, but involves two factors. Specifically:

r(t) =x(t) + y(t) + @lt)

dx(t) = —ax(t)dt + od Wi(t)
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dy(t) = —by(t)dt + nd Ws(t)

where dWi(t)d Wa(t) is a two-dimensional Brownian motion with correlation #

dW,(t)dWs(t) =

and ¥ is a function chosen to match the initial zero curve.

The function swaptionbylg2f is used to compute analytic values of the swaption price
for model parameters, and consequently can be used to calibrate the model. Calibration
consists of minimizing the difference between the observed market prices and the model's
predicted prices.

% Calibrate the set of parameters that minimize the difference between the

% observed and predicted values using swaptionbylg2f and Isgnonlin.

G2PPobjfun = @(x) SwaptionBlackPrices(relidx) - ...
swaptionbylg2f(RateSpec,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx), ...
EurExDatesFull (relidx),EurMatFull(relidx), "Reset”,1);

x0 = [.2 .1 .02 .01 -.5];
Ib =000 0 -1];
ub = [11111];
LG2Fparams = Isqgnonlin(G2PPobjfun,x0,lb,ub,options);
Norm of First-order
Iteration Func-count () step optimality
0 6 12.1928 67.1
1 12 1.36663 0.0974259 8.54
2 18 1.36663 0.112377 8.54
3 24 0.442322 0.0280943 1.3
4 30 0.236944 0.0561887 3.23
5 36 0.13078 0.0840413 7.66
6 42 0.0394584 0.0145003 6.79
7 48 0.0275889 0.0372417 0.755
8 54 0.0261953 0.112377 0.693
9 60 0.0234048 0.206007 0.142
10 66 0.0225717 0.14034 0.116
11 72 0.02254 0.0245656 1.45
12 78 0.0225305 0.0188008 1.36

Local minimum possible.
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Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

LG2f_a = LG2Fparams(1);
LG2f_b LG2Fparams(2);
LG2F_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2F_rho LG2Fparams(5);

% Create the G2PP object and use Monte Carlo simulation to generate the
% interest-rate paths with LinearGaussian2F.simTermStructs.
G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f _eta,LG2f_rho);

G2PPSimPaths = G2PP._simTermStructs(nPeriods, "NTRIALS" ,nTrials, ...
"DeltaTime”,DeltaTime, "Tenor” ,Tenor, "antithetic”,true);

% Examine one simulation

trialldx = 1;

figure

surf(Tenor,SimDates,G2PPSimPaths(:, :,trialldx))

datetick y keepticks keeplimits

title(["Evolution of the Zero Curve for Trial:" num2str(trialldx) " of G2++ Model"])
xlabel ("Tenor (Years)®)

2-146



Pricing Bermudan Swaptions with Monte Carlo Simulation

Evolution of the Zero Curve for Trial:1 of G2++ Model
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% Price the swaption using the helper function hBermudanSwaption
LG2FBermPrice = hBermudanSwaption(G2PPSimPaths,SimDates, Tenor,BermudanStrike,BermudanE:

LIBOR Market Model

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of
discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion
equation for each forward rate

dE(t)

£ = gt + o (t)d W,
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where

9: is the volatility function for each rate and " is an N dimensional geometric

Brownian motion with:
d W;(t)d WJ.I t) = py

The LMM relates the drifts of the forward rates based on no-arbitrage arguments.

The choice with the LMM is how to model volatility and correlation and how to estimate
the parameters of these models for volatility and correlation. In practice, you may use a
combination of historical data (for example, observed correlation between forward rates)
and current market data. For this example, only swaption data is used. Further, many
different parameterizations of the volatility and correlation exist. For this example, two
relatively straightforward parameterizations are used.

One of the most popular functional forms in the literature for volatility is:

cii;-r

gi(t) =g (alTi-t)+ble ' +d

where ¢ adjusts the curve to match the volatility for the ™ forward rate. For this
example, all of the Phi's will be taken to be 1.

For the correlation, the following functional form will be used:

Once the functional forms have been specified, these parameters need to be estimated
using market data. One useful approximation, initially developed by Rebonato, is the
following, which computes the Black volatility for a European swaption, given an LMM
with a set of volatility functions and a correlation matrix.

5 -
I ENf. D ".":l:l: F- D'FD'F. I:l i o
LFM Wil VWi oI5 —_— / g;(t)a;(t)dt

& z
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;Pit, T;)

Ef: T P(L, t)

k=ax+l

wilt) =

This calculation is done using blackvolbyrebonato to compute analytic values of the
swaption price for model parameters, and consequently, is then used to calibrate the
model. Calibration consists of minimizing the difference between the observed implied
swaption Black volatilities and the predicted Black volatilities.

nRates = 10;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));

objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec, ...
repmat({@(t) ones(size(t)).*(x(L)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1), ...
CorrFunc(meshgrid(l:nRates-1)",meshgrid(l:nRates-1),x(5)),---
EurExDatesFull (relidx),EurMatFull(relidx), "Period®,1);

x0 = [.2 .05 1 .05 .2];
Ib =[00 .50 .01];
ub = [1 12 .3 1];
LMMparams = Isgnonlin(objfun,x0,lb,ub,options);
Norm of First-order
Iteration Func-count f(x) step optimality
0 6 0.156251 0.483
1 12 0.00870177 0.188164 0.0339
2 18 0.00463441 0.165527 0.00095
3 24 0.00331055 0.351017 0.0154
4 30 0.00294775 0.0892616 7.47e-05
5 36 0.00281565 0.385779 0.00917
6 42 0.00278988 0.0145632 4.15e-05
7 48 0.00278522 0.115042 0.00116

Local minimum possible.

Isgnonlin stopped because the final change in the sum of squares relative to
its initial value is less than the selected value of the function tolerance.

% Calculate VolFunc for the LMM object.
a = LMMparams(1);
b = LMMparams(2);
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c
d

LMMparams(3);
LMMparams(4);

Beta = LMMparams(5);

VolFunc = repmat({@(t) ones(size(t))-*(a*t + b).*exp(-c*t) + d},nRates-1,1);
% Plot the volatility function

figure

fplot(VolFunc{1},[0 20])
title("Volatility Function®)

Volatility Function

0.22 b

0.2r1 1 7

016 ! 7

0.14 | \ 1

0.08 T 7
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% Inspect the correlation matrix
CorrelationMatrix = CorrFunc(meshgrid(l:nRates-1)",meshgrid(l:nRates-1),Beta);
displayCorrelationMatrix(CorrelationMatrix);

Correlation Matrix

1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932
0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951
0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980
0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990
0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000

% Create the LMM object and use Monte Carlo simulation to generate the
% interest-rate paths with LiborMarketModel.simTermStructs.
LMM = LiborMarketModel (RateSpec,VolFunc,CorrelationMatrix, "Period”,1);

[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods, "nTrials”,nTrials);

% Examine one simulation

trialldx = 1;

figure

tmpPlotData = LMMZeroRates(:, :,trialldx);

tmpPlotData(tmpPlotData == 0) = NaN;

surf(Tenor,SimDates, tmpPlotData)

title(["Evolution of the Zero Curve for Trial:" num2str(trialldx) " of LIBOR Market Mo
xlabel ("Tenor (Years)®)
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Evolution of the Zero Curve for Trial:1 of LIBOR Market Model
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% Price the swaption using the helper function hBermudanSwaption
LMMTenor = 1:10;
LMMBermPrice = hBermudanSwaption(LMMZeroRates,SimDates,LMMTenor, .045,BermudanExerciseD:
Results
displayResults(nTrials, nPeriods, HW1FBermPrice, LG2FBermPrice, LMMBermPrice);
# of Monte Carlo Trials: 1000
# of Time Periods/Trial: 9

HW1F Bermudan Swaption Price: 3.7629
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LG2F Bermudan Swaption Price: 3.5496

LMM Bermudan Swaption Price: 3.4911

Bibliography
This example is based on the following books, papers and journal articles:
1 Andersen, L. and V. Piterbarg (2010). Interest Rate Modeling, Atlantic Financial

Press.

2 Brigo, D. and F. Mercurio (2001). Interest Rate Models - Theory and Practice with
Smile, Inflation and Credit (2nd ed. 2006 ed.). Springer Verlag.

3 Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.
Hull, J. (2008). Options, Futures, and Other Derivatives. Prentice Hall.

5 Rebonato, R., K. McKay, and R. White (2010). The Sabr/Libor Market Model: Pricing,
Calibration and Hedging for Complex Interest-Rate Derivatives. John Wiley & Sons.
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Utility Functions

function displayCorrelationMatrix(CorrelationMatrix)

fprintf(“Correlation Matrix\n");

fprintf([repmat("%1.3F *,1,length(CorrelationMatrix)) ° \n"],CorrelationMatrix);
end

function displayResults(nTrials, nPeriods, HW1FBermPrice, LG2FBermPrice, LMMBermPrice)
fprintf(” # of Monte Carlo Trials: %8d\n* , nTrials);
fprintf(” # of Time Periods/Trial: %8d\n\n" , nPeriods);

fprintf("HW1F Bermudan Swaption Price:
fprintf("LG2F Bermudan Swaption Price:
fprintf(® LMM Bermudan Swaption Price:

%8.4f\n", HW1FBermPrice);
%8.4f\n", LG2FBermPrice);
%8.4f\n", LMMBermPrice);

end

See Also

agencyoas | agencyprice | blackvolbyrebonato | blackvolbysabr |
bndfutimprepo | bndfutprice | capbyblk | capbylg2f | convfactor |
Ffloorbyblk | Floorbylg2f | hwcalbycap | hwcalbyfloor | optsensbysabr |
swaptionbyblk | swaptionbylg2f | tfutbyprice | tfutbyyield | tFfutimprepo
| tfutpricebyrepo | tfutyieldbyrepo

Related Examples
. “Calibrate the SABR Model ” on page 2-34
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. “Price a Swaption Using the SABR Model” on page 2-40

. “Computing the Agency OAS for Bonds” on page 6-3

. “Analysis of Bond Futures” on page 7-13

. “Managing Interest-Rate Risk with Bond Futures” on page 7-17

. “Fitting the Diebold Li Model” on page 7-25

. “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-121

More About

. “Managing Present Value with Bond Futures” on page 7-16
. “Supported Interest-Rate Instruments” on page 2-2

. “Supported Equity Derivatives” on page 3-24

. “Supported Energy Derivatives” on page 3-41
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Graphical Representation of Trees

In this section...

“Introduction” on page 2-155
“Observing Interest Rates” on page 2-155

“Observing Instrument Prices” on page 2-159

Introduction

You can use the function treeviewer to display a graphical representation of a tree,
allowing you to examine interactively the prices and rates on the nodes of the tree until
maturity. To get started with this process, first load the data file deriv.mat included in

this toolbox.

load deriv.mat

Note treeviewer price tree diagrams follow the convention that increasing prices
appear on the upper branch of a tree and, consequently, decreasing prices appear on the
lower branch. Conversely, for interest rate displays, decreasing interest rates appear on
the upper branch (prices are rising) and increasing interest rates on the lower branch
(prices are falling).

For information on the use of treeviewer to observe interest rate movement, see
“Observing Interest Rates” on page 2-155. For information on using treeviewer to
observe the movement of prices, see “Observing Instrument Prices” on page 2-159.
Observing Interest Rates

If you provide the name of an interest rate tree to the treeviewer function, it displays
a graphical view of the path of interest rates. For example, here is the treeviewer

representation of all the rates along both the up and down branches of HIMTree.

treeviewer(HIMTree)
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<) Tree Yiewer 10l =|

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat

Help | Cloze |

The example in “Isolating a Specific Node” on page 2-89 used bushpath to find the path
of forward rates along an HJM tree by taking the first branch up and then two branches
down the rate tree.

FRates

bushpath(HIMTree.FwdTree, [1 2 2])

FRates

1.0356
1.0364
1.0526
1.0674

With the treeviewer function you can display the identical information by clicking
along the same sequence of nodes, as shown next.
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<) Tree Yiewer
File Edit Yiew | Insert Tools Window Help

=1k
r Tree Visualization
Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
1.04
1.05
1.07
1.04
Help | Cloze |

Next is a treeviewer representation of interest rates along several branches of

BDTTree.

treeviewer(BDTTree)
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2-158

<) Tree Yiewer =l
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat

Help Cloze

Note When using treeviewer with recombining trees, such as BDT, BK, and HW, you
must click each node in succession from the beginning to the end. Because these trees can
recombine, treeviewer is unable to complete the path automatically.

The example in “Isolating a Specific Node” on page 2-89 used treepath to find the path
of interest rates taking the first branch up and then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree,

FRates =

1.1000
1.0979
1.1377
1.1606

[122])

You can display the identical information by clicking along the same sequence of nodes,

as shown next.
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<) Tree Yiewer i 10l =|
File Edit Yiew Insert Tools Window | Help
r Tree Visualization
; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat
1.1
1.1 1.14
1.16
0 1 2 3
Help Cloze

Observing Instrument Prices

To use treeviewer to display a tree of instrument prices, provide the name of an
instrument set along with the name of a price tree in your call to treeviewer, for
example:

load deriv.mat

[Price, PriceTree] = hjmprice(HIMTree, HIMInstSet);
treeviewer(PriceTree, HIMInstSet)

With treeviewer you select each instrument individually in the instrument portfolio for
display.
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<} Tree ¥iewer _ ||:||1|

File Edit Yiew Insert Tools Window Help

r Tree Visualization

; ; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
Instrument: |4°/° bond VI
4% bond

98.72 Option 101

4% Fined
20BP Float
3% Cap

3% Floor
E%/20BP Sway

Help | Cloze |

You can use an analogous process to view instrument prices based on the BDT interest
rate tree included in deriv.mat.

load deriv.mat

[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(BDTPriceTree, BDTInstSet)
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5 Treeiener _ioix]
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
Instrument: |'|U°/° Bond VI
10% Bond
Option 95
10% Fixed
Z20BP Float
18% Cap
+| 9% Floor
18%/10BP Swap
100
91.32
0 1 2 3 4
Help Cloze

Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument prices

through time. For the first 4% bond in the HJM instrument portfolio, treeviewer
indicates a valuation date price of 98.72, the same value obtained by accessing the
PriceTree structure directly.
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<) Tree Yiewer =l
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
&+ Path " Table
" MNode and Children ' Diagram
" Plat

Instrument: |4°/° bond VI

100.2

98.72

0 1 2 3 4 |

Help Cloze |

As a further example, look at the sixth instrument in the price vector, the 3% cap. At the
valuation date, its value obtained directly from the structure is 6.2831. Use treeviewer

on this instrument to confirm this price.
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<)} Tree Yiewer

File Edit Yiew Insert Tools Window Help

=1k
r Tree Visualization
Selection Wisualization
% Path " Table
" MNode and Children ' Diagram
" Plat
Instrument: ISX Cap VI

Help Cloze

Additional Observation Times

The second node represents the first-rate observation time, tObs =
displays two states, one representing the branch going up and the other one representing
the branch going down.

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(

ans =

100.
99.
0.
100.
100.
3.
0.
3.

1563
7309
1007
1563
3782
2594
1007
5597

D

1. This node
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As before, you can use treeviewer, this time to examine the price for the 4% bond on
the up branch. treeviewer displays a price of 100.2 for the first node of the up branch,
as expected.

-ioix
File Edit Yiew Insert Tools Window Help
r Tree Visualization
; ; ; ; ; Selection Wisualization
" Path ! Tahle
' Node and Children % Diagram
! Flat

Instrument: |4°/° bond VI

100.8

100.2

98.81

(=N
~a
a1}
= |

Help | Cloze

Now examine the corresponding down branch.
PriceTree.PBush{2}(:,:,2)
ans =

96.3041
94.1986
0
96.3041
100.3671
8.6342
0
-0.3923

Use treeviewer once again, now to observe the price of the 4% bond on the down
branch. The displayed price of 96.3 conforms to the price obtained from direct access of
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the PriceTree structure. You may continue this process as far along the price tree as
you want.

<) Tree Yiewer =] 3

File Edit Yiew Insert Tools Window Help

r Tree Visualization
Selection Wisualization
" Path ! Tahle
' Node and Children % Diagram
! Flat

Instrument: |4°/° bond VI

98.81

96.3

96.85

Help Cloze

See Also

bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens
| bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm

| bondbyhw | bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm |
capbyhw | cfbybdt | cfbybk | cfbyhjm | cfbyhw | cfbyzero | Fixedbybdt
Ffixedbybk | fixedbyhjm | Fixedbyhw | Fixedbyzero | floatbybdt | floatbybk
| Floatbyhjm | Ffloatbyhw | floatbyzero | floatdiscmargin | floatmargin |
floorbybdt | floorbybk | floorbyblk | floorbyhjm | floorbyhw | hjmprice |
hjmsens | hjmtimespec | hymtree | hjmvolspec | hwcalbycap | hwcalbyfloor
| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption
| intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt
| oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw
| optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw
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2-166

| optFloatbybdt | optfloatbybk | optfloatbyhjm | optFloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples

“Overview of Interest-Rate Tree Models” on page 2-48

“Pricing Using Interest-Rate Term Structure” on page 2-70
“Pricing Using Interest-Rate Tree Models” on page 2-97
“Understanding Interest-Rate Tree Models” on page 2-77
“Understanding the Interest-Rate Term Structure” on page 2-53

More About

“Supported Interest-Rate Instruments” on page 2-2
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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“Understanding Equity Trees” on page 3-2

“Supported Equity Derivatives” on page 3-24

“Supported Energy Derivatives” on page 3-41

“Pricing European and American Spread Options” on page 3-49

“Hedging Strategies Using Spread Options” on page 3-68

“Pricing Swing Options using the Longstaff-Schwartz Method” on page 3-76

“Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page
3-89

“Pricing Asian Options” on page 3-104

“Pricing Equity Derivatives Using Trees” on page 3-120

“Computing Equity Instrument Sensitivities” on page 3-134

“Equity Derivatives Using Closed-Form Solutions” on page 3-140

“Pricing European Call Options Using Different Equity Models” on page 3-153
“Compute the Option Price on a Future” on page 3-161
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Understanding Equity Trees

Binomial equity options pricing tree models:

In this section...

“Introduction” on page 3-2

“Building Equity Binary Trees” on page 3-3

“Building Implied Trinomial Trees” on page 3-8

“Building Standard Trinomial Trees” on page 3-15

“Examining Equity Trees ” on page 3-18

“Differences Between CRR and EQP Tree Structures” on page 3-22

Introduction

Financial Instruments Toolbox supports five types of recombining tree models to
represent the evolution of stock prices:

+  Cox-Ross-Rubinstein (CRR) model

+  Equal probabilities (EQP) model

* Leisen-Reimer (LR) model

* Implied trinomial tree (ITT) model

+  Standard trinomial tree (STT) model

For a discussion of recombining trees, see “Rate and Price Trees” on page 2-49.

The CRR, EQP, LR, STT, and ITT models are examples of discrete time models. A
discrete time model divides time into discrete bits; prices can only be computed at these
specific times.

The CRR model is one of the most common methods used to model the evolution of stock
processes. The strength of the CRR model lies in its simplicity. It is a good model when
dealing with many tree levels. The CRR model yields the correct expected value for each
node of the tree and provides a good approximation for the corresponding local volatility.
The approximation becomes better as the number of time steps represented in the tree is
increased.
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The EQP model is another discrete time model. It has the advantage of building a tree
with the exact volatility in each tree node, even with small numbers of time steps. It also
provides better results than CRR in some given trading environments, for example, when
stock volatility is low and interest rates are high. However, this additional precision
causes increased complexity, which is reflected in the number of calculations required to
build a tree.

The LR model is another discrete time model. It has the advantage of producing
estimates close to the Black-Scholes model using only a few steps, while also minimizing
the oscillation.

The ITT model is a CRR-style implied trinomial tree which takes advantage of prices
quoted from liquid options in the market with varying strikes and maturities to build
a tree that more accurately represents the market. An I'TT model is commonly used to
price exotic options in such a way that they are consistent with the market prices of
standard options.

The STT model is another discrete time model. It is considered to produce more accurate
results than the binomial model when fewer time steps are modeled. The STT model

is sometimes more stable and accurate than the binomial model when pricing exotic
options.

Building Equity Binary Trees

The tree of stock prices is the fundamental unit representing the evolution of the price
of a stock over a given period of time. The MATLAB functions crrtree, egptree, and
Irtree create CRR trees, EQP trees, and LR trees, respectively. These functions create
an output tree structure along with information about the parameters used for creating
the tree.

The functions crrtree, eqptree, and Irtree take three structures as input
arguments:

*  The stock parameter structure StockSpec
* The interest-rate term structure RateSpec
* The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees

The calling syntax for crrtree is:
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CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)

Similarly, the calling syntax for eqptree is:

EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)

And, the calling syntax for Irtree is:

LRTree = Irtree(StockSpec, RateSpec, TimeSpec, Strike)

All three functions require the structures StockSpec, RateSpec, and TimeSpec as
input arguments:

+ StockSpec is a structure that specifies parameters of the stock whose price evolution
is represented by the tree. This structure, created using the function stockspec,
contains information such as the stock's original price, its volatility, and its dividend
payment information.

+ RateSpec is the interest-rate specification of the initial rate curve. Create this
structure with the function intenvset.

+ TimeSpec is the tree time layout specification. Create these structures with the
functions crrtimespec, eqptimespec, and Irtimespec. The structures contain
information regarding the mapping of relevant dates into the tree structure, plus the
number of time steps used for building the tree.

Specifying the Stock Structure for Equity Binary Trees

The structure StockSpec encapsulates the stock-specific information required for
building the binary tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two
input arguments and accepts up to three additional input arguments that depend on the
existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

+ Sigma is the decimal annual volatility of the underlying security.

+ AssetPrice is the price of the stock at the valuation date.
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+ DividendType is a character vector specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

+ DividendAmounts has a value that depends on the specification of DividendType.
For DividendType cash, DividendAmounts is a vector of cash dividends. For
DividendType constant, it is a vector of constant annualized dividend yields. For
DividendType continuous, it is a scalar representing a continuously annualized
dividend yield.

+ ExDividendDates also has a value that depends on the nature of DividendType.
For DividendType cash or constant, ExDividendDates is vector of dividend
dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Binary Tree

Consider a stock with a price of $100 and an annual volatility of 15%. Assume that the
stock pays three cash $5.00 dividends on dates January 01, 2004, July 01, 2005, and
January 01, 2006. You specify these parameters in MATLAB as:

Sigma = 0.15;

AssetPrice = 100;

DividendType = “cash”;

DividendAmounts = [5; 5; 5];
ExDividendDates = {"jan-01-2004", "july-01-2005", "jan-01-2006"};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

StockSpec =

FinObj: "StockSpec*
Sigma: 0.1500
AssetPrice: 100
DividendType: “cash*®
DividendAmounts: [3x1 double]
ExDividendDates: [3x1 double]

Specifying the Interest-Rate Term Structure for Equity Binary Trees

The RateSpec structure defines the interest rate environment used when building

the stock price binary tree. “Modeling the Interest-Rate Term Structure” on page 2-65
explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees

The TimeSpec structure defines the tree layout of the binary tree:
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* It maps the valuation and maturity dates to their corresponding times.

+ It defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the number of
intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)

TimeSpec Irtimespec(ValuationDate, Maturity, NumPeriods)

where:

+ ValuationDate is a scalar date marking the pricing date and first observation in
the tree (location of the root node). You enter ValuationDate either as a serial date
number (generated with datenum) or a date character vector.

* Maturity is a scalar date marking the maturity of the tree, entered as a serial date
number or a date character vector.

* NumPeriods is a scalar defining the number of time steps in the tree; for example,
NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using a Binary Tree

Consider building a CRR tree, with a valuation date of January 1, 2003, a maturity date
of January 1, 2008, and 20 time steps. You specify these parameters in MATLAB as:

ValuationDate = "Jan-1-2003";

Maturity = "Jan-1-2008";

NumPeriods = 20;

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

TimeSpec =

FinObj: "BinTimeSpec"
ValuationDate: 731582
Maturity: 733408
NumPeriods: 20
Basis: O
EndMonthRule: 1
tObs: [1x21 double]
dObs: [1x21 double]
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Two vector fields in the TimeSpec structure are of particular interest: dObs and
tObs. These two fields represent the observation times and corresponding dates of
all tree levels, with dObs(1) and tObs(1), respectively, representing the root node
(ValuationDate), and dObs(end) and tObs(end) representing the last tree level
Maturity).

Note There is no relationship between the dates specified for the tree and the implied
tree level times, and the maturities specified in the interest-rate term structure. The
rates in RateSpec are interpolated or extrapolated as required to meet the time
distribution of the tree.

Examples of Binary Tree Creation

You can now use the StockSpec and TimeSpec structures described previously to build
an equal probability tree (EQPTree), a CRR tree (CRRTree), or an LR tree (LRTree).
First, you must define the interest-rate term structure. For this example, assume that
the interest rate is fixed at 10% annually between the valuation date of the tree (January
1, 2003) until its maturity.

ValuationDate = "Jan-1-2003";

Maturity = "Jan-1-2008";

Rate = 0.1;

RateSpec = intenvset("Rates”, Rate, "StartDates”,
ValuationDate, "EndDates”, Maturity, “Compounding®, -1);

To build a CRRTree, enter:
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree

FinObj: "BinStockTree*
Method: “CRR*
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [1x21 double]
dObs: [1x21 double]
STree: {1x21 cell}
UpProbs: [1x20 double]

To build an EQPTree, enter:
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EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree

FinObj: "BinStockTree*
Method: "EQP*
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [1x21 double]
dObs: [1x21 double]
STree: {1x21 cell}
UpProbs: [1x20 double]

Building Implied Trinomial Trees

The tree of stock prices is the fundamental unit representing the evolution of the price
of a stock over a given period of time. The MATLAB function itttree creates an output
tree structure along with the information about the parameters used to create the tree.

The function itttree takes four structures as input arguments:

* The stock parameter structure StockSpec

* The interest-rate term structure RateSpec

* The tree time layout structure TimeSpec

+ The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees
The calling syntax for itttree is:
ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)

+ StockSpec is a structure that specifies parameters of the stock whose price evolution
is represented by the tree. This structure, created using the function stockspec,
contains information such as the stock's original price, its volatility, and its dividend
payment information.

* RateSpec is the interest-rate specification of the initial rate curve. Create this
structure with the function intenvset.

+ TimeSpec is the tree time layout specification. Create these structures with the
function itttimespec. This structure contains information regarding the mapping of
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relevant dates into the tree structure, plus the number of time steps used for building
the tree.

+ StockOptSpec is a structure containing parameters of European stock options
instruments. Create this structure with the function stockoptspec.

Specifying the Stock Structure for Implied Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for
building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two
input arguments and accepts up to three additional input arguments that depend on the
existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

+ Sigma is the decimal annual volatility of the underlying security.
+ AssetPrice is the price of the stock at the valuation date.

+ DividendType is a character vector specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

+ DividendAmounts has a value that depends on the specification of DividendType.
For DividendType cash, DividendAmounts is a vector of cash dividends. For
DividendType constant, it is a vector of constant annualized dividend yields. For
DividendType continuous, it is a scalar representing a continuously annualized
dividend yield.

+ ExDividendDates also has a value that depends on the nature of DividendType.
For DividendType cash or constant, ExDividendDates is vector of dividend
dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using an Implied Trinomial Tree
Consider a stock with a price of $100 and an annual volatility of 12%. Assume that the

stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB
as:

3-9
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S0=100;
DividendYield = 0.06;
Sigma=.12;

StockSpec = stockspec(Sigma, So, "“continuous”, DividendYield)
StockSpec =

FinObj: “StockSpec*
Sigma: 0.1200
AssetPrice: 100
DividendType: “continuous”
DividendAmounts: 0.0600
ExDividendDates: []

Specifying the Interest-Rate Term Structure for Implied Trinomial Trees

The structure RateSpec defines the interest rate environment used when building

the stock price binary tree. “Modeling the Interest-Rate Term Structure” on page 2-65
explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Implied Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

* It maps the valuation and maturity dates to their corresponding times.

+ It defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the number of
intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:
TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

where:

+ ValuationDate is a scalar date marking the pricing date and first observation in
the tree (location of the root node). You enter ValuationDate either as a serial date
number (generated with datenum) or a date character vector.

+ Maturity is a scalar date marking the maturity of the tree, entered as a serial date
number or a date character vector.
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* NumPeriods is a scalar defining the number of time steps in the tree; for example,
NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using an Implied Trinomial Tree

Consider building an ITT tree, with a valuation date of January 1, 2006, a maturity date
of January 1, 2008, and four time steps. You specify these parameters in MATLAB as:

ValuationDate = "01-01-2006";
EndDate = "01-01-2008";
NumPeriods = 4;

TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec =

FinObj: "ITTTimeSpec*
ValuationDate: 732678
Maturity: 733408
NumPeriods: 4
Basis: O
EndMonthRule: 1
tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs and
tObs. These two fields represent the observation times and corresponding dates of
all tree levels, with dObs (1) and tObs(1), respectively, representing the root node
(ValuationDate), and dObs(end) and tObs(end) representing the last tree level
(Maturity).

Specifying the Option Stock Structure for Implied Trinomial Trees

The StockOptSpec structure encapsulates the option-stock-specific information
required for building the implied trinomial tree. You generate StockOptSpec with the
function stockoptspec. This function requires five input arguments. An optional sixth
argument InterpMethod, specifying the interpolation method, can be included. The
syntax for calling stockoptspec is:

[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)
where:

* Optpriceis a NINST-by-1 vector of European option prices.
+ Strike is a NINST-by-1 vector of strike prices.
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+ Settle is a scalar date marking the settlement date.
* Maturity is a NINST-by-1 vector of maturity dates.

+ OptSpecis a NINST-by-1 cell array of character vectors for the values "call” or
"put”.

Option Stock Structure Example Using an Implied Trinomial Tree

Consider the following data quoted from liquid options in the market with varying
strikes and maturity. You specify these parameters in MATLAB as:

Settle = "01/01/06";

Maturity = [*07/01/06";
*07/01/06";
*07/01/06";
*07/01/06";
*01/01/07";
*01/01/07";
*01/01/07";
*01/01/07";
*07/01/07";
*07/01/07";
*07/01/07";
*07/01/07";
*01/01/08";
*01/01/08";
*01/01/08";
*01/01/08"1;

Strike = [113;
101;
100;

88;
128;
112;
100;

78;
144;
112;
100;

69;
162;
112;
100;

61]:

OptPrice =[ 0;
4.807905472659144 ;
1.306321897011867;
0.048039195057173;

0;
2.310953054191461;
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1.421950392866235;
0.020414826276740;

0;
-091986935627730;
-346534812295291;
-005101325584140;

0;
-047628153217246;
-219653432150932;
.001041436654748] ;

or 0

(@ eo]

OptSpec = { "call”;
“call~;
“put”;

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec =

FinObj: "StockOptSpec*
OptPrice: [16x1 double]
Strike: [16x1 double]
Settle: 732678
Maturity: [16x1 double]
OptSpec: {16x1 cell}
InterpMethod: "price*

Note: The algorithm for building the ITT tree requires specifying option prices for all
tree nodes. The maturities of those options correspond to those of the tree levels, and the
strike to the prices on the tree nodes. The types of option are Cal Is for the nodes above
the central nodes, and Puts for those below and including the central nodes.

Clearly, all these options will not be available in the market, hence making interpolation

and extrapolation necessary to obtain the node option prices. The degree to which the
tree reflects the market will unavoidably be tied to the results of these interpolations and
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extrapolations. Keeping in mind that extrapolation is less accurate than interpolation,
and more so the further away the extrapolated points are from the data points, the
function itttree issues a warning with a list of the options for which extrapolation was
necessary.

In some cases, it may be desirable to view a list of ideal option prices to form an idea
of the ranges needed. This can be achieved by calling the function 1tttree specifying
only the first three input arguments. The second output argument is a structure array
containing the list of ideal options needed.

Creating an Implied Trinomial Tree

You can now use the StockSpec, TimeSpec, and StockOptSpec structures described
in “Stock Structure Example Using an Implied Trinomial Tree” on page 3-9,
“TimeSpec Example Using an Implied Trinomial Tree” on page 3-11, and “Option
Stock Structure Example Using an Implied Trinomial Tree” on page 3-12 to build

an implied trinomial tree (ITT). First, you must define the interest rate term structure.
For this example, assume that the interest rate is fixed at 8% annually between the
valuation date of the tree (January 1, 2006) until its maturity.

Rate = 0.08;
ValuationDate = "01-01-2006";
EndDate = "01-01-2008";

RateSpec = intenvset("StartDates”, ValuationDate, "EndDates”, EndDate, ...
“ValuationDate®", ValuationDate, "Rates”, Rate, "Compounding®, -1);

To build an ITTTree, enter:
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)
ITTTree =

FinObj: "I1TStockTree”
StockSpec: [1x1 struct]
StockOptSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.500000000000000 1 1.500000000000000 2]
dObs: [732678 732860 733043 733225 733408]
STree: {1x5 cell}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]l}
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Building Standard Trinomial Trees

The tree of stock prices is the fundamental unit representing the evolution of the price
of a stock over a given period of time. The MATLAB function stttree creates an output
tree structure along with the information about the parameters used to create the tree.

The function stttree takes three structures as input arguments:

* The stock parameter structure StockSpec
* The interest-rate term structure RateSpec
* The tree time layout structure TimeSpec

Calling Sequence for Standard Trinomial Trees

The calling syntax for stttree is:
STTTree = stttree (StockSpec,RateSpec,TimeSpec)

+ StockSpec is a structure that specifies parameters of the stock whose price evolution
is represented by the tree. This structure, created using the function stockspec,
contains information such as the stock's original price, its volatility, and its dividend
payment information.

+ RateSpec is the interest-rate specification of the initial rate curve. Create this
structure with the function intenvset.

+ TimeSpec is the tree time layout specification. Create these structures with the
function stttimespec. This structure contains information regarding the mapping of
relevant dates into the tree structure, plus the number of time steps used for building
the tree.

Specifying the Stock Structure for Standard Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for
building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two
input arguments and accepts up to three additional input arguments that depend on the
existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
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DividendAmounts, ExDividendDates)
where:

* Sigmais the decimal annual volatility of the underlying security.
+ AssetPrice is the price of the stock at the valuation date.

+ DividendType is a character vector specifying the type of dividend paid by the stock.
Allowed values are cash, constant, or continuous.

+ DividendAmounts has a value that depends on the specification of DividendType.
For DividendType cash, DividendAmounts is a vector of cash dividends. For
DividendType constant, it is a vector of constant annualized dividend yields. For
DividendType continuous, it is a scalar representing a continuously annualized
dividend yield.

+ ExDividendDates also has a value that depends on the nature of DividendType.
For DividendType cash or constant, ExDividendDates is vector of dividend
dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Standard Trinomial Tree

Consider a stock with a price of $100 and an annual volatility of 12%. Assume that the
stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB
as:

So0=100;

DividendYield = 0.06;
Sigma=.12;

StockSpec = stockspec(Sigma, So, “continuous”, DividendYield)

StockSpec =

FinObj: "StockSpec*®
Sigma: 0.1200
AssetPrice: 100
DividendType: "continuous®
DividendAmounts: 0.0600
ExDividendDates: []

Specifying the Interest-Rate Term Structure for Standard Trinomial Trees

The structure RateSpec defines the interest rate environment used when building
the stock price binary tree. “Modeling the Interest-Rate Term Structure” on page 2-65
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explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Standard Trinomial Trees
The TimeSpec structure defines the tree layout of the trinomial tree:

* It maps the valuation and maturity dates to their corresponding times.

+ It defines the time of the levels of the tree by dividing the time span between
valuation and maturity into equally spaced intervals. By specifying the number of
intervals, you define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:
TimeSpec = stttimespec(ValuationDate, Maturity, NumPeriods)
where:

+ ValuationDate is a scalar date marking the pricing date and first observation in
the tree (location of the root node). You enter ValuationDate either as a serial date
number (generated with datenum) or a date character vector.

* Maturity is a scalar date marking the maturity of the tree, entered as a serial date
number or a date character vector.

* NumPeriods is a scalar defining the number of time steps in the tree; for example,
NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using a Standard Trinomial Tree

Consider building an STT tree, with a valuation date of January 1, 2006, a maturity date
of January 1, 2008, and four time steps. You specify these parameters in MATLAB as:

ValuationDate = "01-01-2006";
EndDate = "01-01-2008";
NumPeriods = 4;

TimeSpec = stttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec
FinObj: "STTTimeSpec*

ValuationDate: 732678
Maturity: 733408
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NumPeriods:

Basis:

EndMonthRule:
tObs: [0 0.5000 1 1.5000 2]

dObs: [732678 732860 733043 733225 733408]

oA

Two vector fields in the TimeSpec structure are of particular interest: dObs and
tObs. These two fields represent the observation times and corresponding dates of
all tree levels, with dObs (1) and tObs(1), respectively, representing the root node
(ValuationDate), and dObs(end) and tObs(end) representing the last tree level
(Maturity).

Creating a Standard Trinomial Tree

You can now use the StockSpec, TimeSpec structures described in “Stock Structure
Example Using an Implied Trinomial Tree” on page 3-9 and “TimeSpec Example

Using an Implied Trinomial Tree” on page 3-11, to build a standard trinomial tree
(STT). First, you must define the interest rate term structure. For this example, assume
that the interest rate is fixed at 8% annually between the valuation date of the tree
(January 1, 2006) until its maturity.

Rate = 0.08;

ValuationDate = "01-01-2006";
EndDate = "01-01-2008";

RateSpec = intenvset("StartDates”, ValuationDate, "EndDates”, EndDate, ...
“ValuationDate®", ValuationDate, "Rates”, Rate, "Compounding®, -1);

To build an STTTree, enter:

STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree =

FinObj: "STStockTree"
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 0.5000 1 1.5000 2]
dObs: [732678 732860 733043 733225 733408]
STree: {1x5 cell}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

Examining Equity Trees

Financial Instruments Toolbox uses equity binary and trinomial trees to represent
prices of equity options and of underlying stocks. At the highest level, these trees have
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structures wrapped around them. The structures encapsulate information required to
interpret information in the tree.

To examine an equity, binary, or trinomial tree, load the data in the MAT-file
deriv.mat into the MATLAB workspace.

load deriv.mat

Display the list of variables loaded from the MAT-file with the whos command.

Name Size Bytes Class Attributes
BDTInstSet Ix1 27344 struct
BDTTree Ix1 7322 struct
BKInstSet Ix1 27334 struct
BKTree 1x1 8532 struct
CRRINnstSet Ix1 21066 struct
CRRTree 1x1 7086 struct
EQPInstSet 1x1 21066 struct
EQPTree 1x1 7086 struct
HIMInstSet Ix1 27336 struct
HIMTree 1x1 8334 struct
HWInstSet Ix1 27334 struct
HWTree 1x1 8532 struct
ITTInstSet Ix1 21070 struct
ITTTree Ix1 12660 struct
STTInstSet Ix1 21070 struct
STTTree Ix1 7782 struct
ZerolnstSet Ix1 17458 struct
ZeroRateSpec 1x1 2152 struct

Examining a CRRTree

You can examine in some detail the contents of the CRRTree structure contained in this
file.

CRRTree

CRRTree =

FinObj: "BinStockTree*
Method: “CRR*"
StockSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3 4]
dObs: [731582 731947 732313 732678 733043]
STree: {[100] [110.5171 90.4837] [122.1403 100 81.8731] [1x4 double] [1x5 double]}
UpProbs: [0.7309 0.7309 0.7309 0.7309]

The Method field of the structure indicates that this is a CRR tree, not an EQP tree.

The fields StockSpec, TimeSpec, and RateSpec hold the original structures passed
into the function crrtree. They contain all the context information required to interpret
the tree data.
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The fields tObs and dObs are vectors containing the observation times and dates, that is,
the times and dates of the levels of the tree. In this particular case, tObs reveals that the
tree has a maturity of four years (tObs(end) = 4) and that it has four time steps (the
length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one
day. This means that all values in tObs that correspond to a given day from 00:00
hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the
function datestr to convert these MATLAB serial dates into their character vector
representations.

The field UpProbs is a vector representing the probabilities for up movements from any
node in each level. This vector has one element per tree level. All nodes for a given level
have the same probability of an up movement. In the specific case being examined, the
probability of an up movement is 0.7309 for all levels, and the probability for a down
movement is 0.2691 (1 — 0.7309).

Finally, the field STree contains the actual stock tree. It is represented in MATLAB
as a cell array with each cell array element containing a vector of prices corresponding
to a tree level. The prices are in descending order, that is, CRRTree.STree{3}(1)
represents the topmost element of the third level of the tree, and CRRTree.STree{3}
(end) represents the bottom element of the same level of the tree.

Examining an [TTTree

You can examine in some detail the contents of the 1 TTTree structure contained in this
file.

ITTTree
ITTTree =

FinObj: "I1TStockTree*
StockSpec: [1x1 struct]
StockOptSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
tObs: [0 1 2 3 4]
dObs: [732678 733043 733408 733773 734139]
STree: {1x5 cell}
Probs: {[3x1 double] [3x3 double] [3x5 double] [3x7 double]}

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the original
structures passed into the function 1tttree. They contain all the context information
required to interpret the tree data.
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The fields tObs and dObs are vectors containing the observation times and dates, the
times and dates of the levels of the tree. In this particular case, tObs reveals that the
tree has a maturity of four years (tObs(end) = 4) and that it has four time steps (the
length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one
day. This means that all values in tObs that correspond to a given day from 00:00
hours to 24:00 hours are mapped to the corresponding value in dObs. You can use the
function datestr to convert these MATLAB serial dates into their character vector
representations.

The field Probs is a vector representing the probabilities for movements from any node
in each level. This vector has three elements per tree node. In the specific case being
examined, at tObs= 1, the probability for an up movement is 0.4675, and the probability
for a down movement is 0.1934.

Finally, the field STree contains the actual stock tree. It is represented in MATLAB

as a cell array with each cell array element containing a vector of prices corresponding
to a tree level. The prices are in descending order, that is, ITTTree.STree{4}(1)
represents the top element of the fourth level of the tree, and ITTTree.STree{4}(end)
represents the bottom element of the same level of the tree.

Isolating a Specific Node for a CRRTree

The function treepath can isolate a specific set of nodes of a binary tree by specifying
the path used to reach the final node. As an example, consider the nodes touched by
starting from the root node, then following a down movement, then an up movement, and
finally a down movement. You use a vector to specify the path, with 1 corresponding to
an up movement and 2 corresponding to a down movement. An up-down-up path is then
represented as [2 1 2]. To obtain the values of all nodes touched by this path, enter:

SVals = treepath(CRRTree.STree, [2 1 2])
Svals =

100.0000
90.4837
100.0000
90.4837

The first value in the vector SVals corresponds to the root node, and the last value
corresponds to the final node reached by following the path indicated.
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Isolating a Specific Node for an ITTTree

The function trintreepath can isolate a specific set of nodes of a trinomial tree by
specifying the path used to reach the final node. As an example, consider the nodes
touched by starting from the root node, then following an up movement, then a middle
movement, and finally a down movement. You use a vector to specify the path, with

1 corresponding to an up movement, 2 corresponding to a middle movement, and 3
corresponding to a down movement. An up-down-middle-down path is then represented
as [1 3 2 3]. To obtain the values of all nodes touched by this path, enter:

pathSVals = trintreepath(ITTTree, [1 3 2 3])

pathSvals

50.0000
66.3448
50.0000
50.0000
37.6819

The first value in the vector pathSVals corresponds to the root node, and the last value
corresponds to the final node reached by following the path indicated.

Differences Between CRR and EQP Tree Structures

In essence, the structures representing CRR trees and EQP trees are similar. If you
create a CRR or an EQP tree using identical input arguments, only a few of the tree
structure fields differ:

+ The Method field has a value of "CRR" or "EQP" indicating the method used to build
the structure.

* The prices in the STree cell array have the same structure, but the prices within the
cell array are different.

+ For EQP, the structure field UpProb always holds a vector with all elements set to
0.5, while for CRR, these probabilities are calculated based on the input arguments
passed when building the tree.

See Also

crrtimespec | crrtree | egptimespec | eqptree | intenvset | itttimespec
| itttree | Irtimespec | Irtree | stockoptspec | stockspec | treepath |
trintreepath
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Related Examples

“Pricing Equity Derivatives Using Trees” on page 3-120

“Creating Instruments or Properties” on page 1-19

“Graphical Representation of Equity Derivative Trees” on page 3-132

More About
. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41

. “Supported Interest-Rate Instruments” on page 2-2
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In this section...

“Asian Option” on page 3-24
“Barrier Option” on page 3-25
“Basket Option” on page 3-27
“Compound Option” on page 3-28
“Convertible Bond” on page 3-29
“Lookback Option” on page 3-30
“Digital Option” on page 3-32
“Rainbow Option” on page 3-33
“Vanilla Option” on page 3-34
“Spread Option” on page 3-36
“Forwards Option” on page 3-37
“Futures Option” on page 3-38

Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value
of the underlying asset during the life (or some part of the life) of the option. They are
similar to lookback options in that there are two types of Asian options: fixed (average
price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the
underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

Fixed call (average price option): max(0,S, —X)
Fixed put (average price option): max(0,X - S, )
Floating call (average strike option): max(0,S—-S_)

Floating put (average strike option): max(0,S, —S)
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where:

S,, is the average price of underlying asset.

S 1s the price of the underlying asset.

X 1is the strike price (applicable only to fixed Asian options).

S,, is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose

asianbycrr Price Asian options from a CRR binomial tree.

asianbyeqp Price Asian options from an EQP binomial tree.

asianbyitt Price Asian options using an implied trinomial tree (ITT).

asianbystt Price Asian options using a standard trinomial tree (STT).

instasian Construct an Asian option.

asianbyls Price European or American Asian options using the Longstaff-
Schwartz model.

asiansensbyls Calculate prices and sensitivities of European or American
Asian options using the Longstaff-Schwartz model.

asianbykv Price European geometric Asian options using the Kemna
Vorst model.

asiansensbykv Calculate prices and sensitivities of European geometric Asian
options using the Kemna Vorst model.

asianbylevy Price European arithmetic Asian options using the Levy model.

asiansensbylevy Calculate prices and sensitivities of European arithmetic Asian

options using the Levy model.

Barrier Option
A barrier option is similar to a vanilla put or call option, but its life either begins or ends

when the price of the underlying stock passes a predetermined barrier value. There are
four types of barrier options.
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Up Knock-In

This option becomes effective when the price of the underlying stock passes above a
barrier that is above the initial stock price. Once the barrier has knocked in, it will not
knock out even if the price of the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying stock passes above a barrier
that is above the initial stock price. Once the barrier has knocked out, it will not knock in
even if the price of the underlying instrument moves below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying stock passes below a
barrier that is below the initial stock price. Once the barrier has knocked in, it will not
knock out even if the price of the underlying instrument moves above the barrier again.
Down Knock-Out

This option terminates when the price of the underlying stock passes below a barrier
that is below the initial stock price. Once the barrier has knocked out, it will not knock in
even if the price of the underlying instrument moves above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option.
Knock-outs may pay a rebate when they are knocked out, and knock-ins may pay a

rebate if they expire without ever knocking in.

The following functions support barrier options.

Function Purpose

barrierbycrr Price barrier options from a CRR binomial tree.
barrierbyeqp Price barrier options from an EQP binomial tree.
barrierbyitt Price barrier options using an implied trinomial tree (ITT).
barrierbystt Price barrier options using a standard trinomial tree (STT).
barrierbyfd Price barrier option using finite difference method.
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Function Purpose

barriersensbyfd Calculate barrier option price and sensitivities using finite
difference method.

barrierbybls Price a European barrier option using Black-Scholes option
pricing model.

barriersensbybls Calculate price and sensitivities for a European barrier option
using Black-Scholes option pricing model.

barrierbyls Price a barrier option using Longstaff-Schwartz model.

barriersensbyls Calculate price and sensitivities for a barrier option using
Longstaff-Schwartz model.

instbarrier Construct a barrier option.

Basket Option

A basket option is an option on a portfolio of several underlying equity assets. Payout for
a basket option depends on the cumulative performance of the collection of the individual
assets. A basket option tends to be cheaper than the corresponding portfolio of plain
vanilla options for these reasons:

+ If the basket components correlate negatively, movements in the value of one
component neutralize opposite movements of another component. Unless all
the components correlate perfectly, the basket option is cheaper than a series of
individual options on each of the assets in the basket.

* A basket option minimizes transaction costs because an investor has to purchase only
one option instead of several individual options.

The payoff for a basket option is as follows:

For a call: max() Wi+ Si - K;0)

where:

For a put: max() K — Wi Si;0)

Si is the price of asset i in the basket.

Wi is the quantity of asset i in the basket.
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K is the strike price.

Financial Instruments Toolbox software supports Longstaff-Schwartz and Nengiu

Ju models for pricing basket options. The Longstaff-Schwartz model supports both
European, Bermuda, and American basket options. The Nengiu Ju model only supports
European basket options. If you want to price either an American or Bermuda basket
option, use the functions for the Longstaff-Schwartz model. To price a European basket

option, use either the functions for the Longstaff-Schwartz model or the Nengiu Ju
model.

Function Purpose

basketbyls Price basket options using the Longstaff-Schwartz model.

basketsensbyls Calculate price and sensitivities for basket options using the
Longstaff-Schwartz model.

basketbyju Price European basket options using the Nengjiu Ju
approximation model.

basketsensbyju Calculate European basket options price and sensitivity using
the Nengjiu Ju approximation model.

basketstockspec Specify a basket stock structure.

Compound Option

A compound option is basically an option on an option; it gives the holder the right to
buy or sell another option. With a compound option, a vanilla stock option serves as the

underlying instrument. Compound options thus have two strike prices and two exercise
dates.

There are four types of compound options:

* Call on a call
* Putonaput
+ Call on a put

* Putonacall

Note The payoff formulas for compound options are too complex for this discussion.

If you are interested in the details, consult the paper by Mark Rubinstein entitled
“Double Trouble,” published in Risk 5 (1991).
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Consider the third type, a call on a put. It gives the holder the right to buy a put option.
In this case, on the first exercise date, the holder of the compound option pay the first
strike price and receives a put option. The put option gives the holder the right to sell the
underlying asset for the second strike price on the second exercise date.

The following functions support compound options.

Function Purpose

compoundbycrr Price compound options from a CRR binomial tree.
compoundbyeqp Price compound options from an EQP binomial tree.
compoundbyitt Price compound options using an implied trinomial tree (ITT).
compoundbystt Price compound options using a standard trinomial tree (STT).
instcompound Construct a compound option.

Convertible Bond

A convertible bond is a financial instrument that combines equity and debt features. It

1s a bond with the embedded option to turn it into a fixed number of shares. The holder
of a convertible bond has the right, but not the obligation, to exchange the convertible
security for a predetermined number of equity shares at a preset price. The debt
component is derived from the coupon payments and the principal. The equity component
is provided by the conversion feature.

Convertible bonds have several defining features:

+  Coupon — The coupon in convertible bonds are typically lower than coupons in vanilla
bonds since investors are willing to take the lower coupon for the opportunity to
participate in the company’s stock via the conversion.

*  Maturity — Most convertible bonds are issued with long-stated maturities. Short-
term maturity convertible bonds usually do not have call or put provisions.

*  Conversion ratio — Conversion ratio is the number of shares that the holder of the
convertible bond will receive from exercising the call option of the convertible bond:
Conversion ratio = par value convertible bond/conversion price
of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares
of stock. This also implies a conversion price of $40 (1000/25). This, $40, would be the
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price at which the owner would buy the shares. This can be expressed as a ratio or as
the conversion price and is specified in the contract along with other provisions.

* Option type:

+ Callable Convertible: a convertible bond that is callable by the issuer. The issuer
of the bond forces conversion, removing the advantage that conversion is at the
discretion of the bondholder. Upon call, the bondholder can either convert the bond
or redeem at the call price. This option enables the issuer to control the price of the
convertible bond and if necessary refinance the debt with a new cheaper one.

+ Puttable Convertible: a convertible bond with a put feature that allows the
bondholder to sell back the bond at a premium on a specific date. This option
protects the holder against rising interest rates by reducing the year to maturity.

Function Purpose

cbondbycrr Price convertible bonds using a CRR binomial tree with the
Tsiveriotis and Fernandes model.

cbondbyeqp Price convertible bonds using an EQP binomial tree with the
Tsiveriotis and Fernandes model.

cbondbyitt Price convertible bonds using an implied trinomial tree with
the Tsiveriotis and Fernandes model.

cbondbystt Price convertible bonds using a standard trinomial tree with
the Tsiveriotis and Fernandes model.

instcbond Construct a cbond instrument for a convertible bond.

Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value
the underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed
and floating. Fixed lookback options have a specified strike price, while floating lookback
options have a strike price determined by the asset path. So, there are a total of four
lookback option types, each with its own characteristic payoff formula:

Fixed call: max(0,S__

-X)

Fixed put: max(0,X - S )
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Floating call: max(0,S-S_, )

Floating put: max(0,S_  —S)

where:

max

S,.. is the maximum price of underlying stock found along the particular path followed

to the node.

S, is the minimum price of underlying stock found along the particular path followed to

the node.

S 1is the price of the und

erlying stock on the node.

X 1is the strike price (applicable only to fixed lookback options).

The following functions support lookback options.

Function Purpose

lookbackbycrr Price lookback options from a CRR binomial tree.

lookbackbyeqp Price lookback options from an EQP binomial tree.

lookbackbyitt Price lookback options using an implied trinomial tree (ITT).

lookbackbystt Price lookback options using an implied trinomial tree (ITT).

instlookback Construct a lookback option based on an equity tree model.

lookbackbycvgsg Calculate prices of European lookback fixed and floating strike
options using the Conze-Viswanathan and Goldman-Sosin-
Gatto models. For more information, see “Lookback Option” on
page 3-44.

lookbacksensbycvgsg Calculate prices and sensitivities of European fixed and
floating strike lookback options using the Conze-Viswanathan
and Goldman-Sosin-Gatto models. For more information, see
“Lookback Option” on page 3-44.

lookbackbyls Calculate prices of lookback fixed and floating strike options

using the Longstaff-Schwartz model. For more information, see

“Lookback Option” on page 3-44.
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Function Purpose

lookbacksensbyls Calculate prices and sensitivities of lookback fixed and floating
strike options using the Longstaff-Schwartz model. For more
information, see “Lookback Option” on page 3-44.

Digital Option

A digital option is an option whose payoff is characterized as having only two potential
values: a fixed payout, when the option is in the money or a zero payout otherwise. This
is the case irrespective of how far the asset price at maturity is above (call) or below (put)
the strike.

Digital options are attractive to sellers because they guarantee a known maximum loss
when the option is exercised. This overcomes a fundamental problem with the vanilla
options, where the potential loss is unlimited. Digital options are attractive to buyers
because the option payoff is a known constant amount, and this amount can be adjusted
to provide the exact quantity of protection required.

Financial Instruments Toolbox supports four types of digital options:
* Cash-or-nothing option — Pays some fixed amount of cash if the option expires in the

money.

+ Asset-or-nothing option — Pays the value of the underlying security if the option
expires in the money.

*  Gap option — One strike decides if the option is in or out of money; another strike
decides the size the size of the payoff.

+  Supershare — Pays out a proportion of the assets underlying a portfolio if the asset
lies between a lower and an upper bound at the expiry of the option.

The following functions calculate pricing and sensitivity for digital options.

Function Purpose

cashbybls Calculate the price of cash-or-nothing digital options
using the Black-Scholes model.

assetbybls Calculate the price of asset-or-nothing digital options
using the Black-Scholes model.

gapbybls Calculate the price of gap digital options using the
Black-Scholes model.
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Function Purpose

supersharebybls Calculate the price of supershare digital options
using the Black-Scholes model.

cashsensbybls Calculate the price and sensitivities of cash-or-
nothing digital options using the Black-Scholes
model.

assetsensbybls Calculate the price and sensitivities of asset-or-
nothing digital options using the Black-Scholes
model.

gapsensbybls Calculate the price and sensitivities of gap digital
options using the Black-Scholes model.

supersharesensbybls Calculate the price and sensitivities of supershare
digital options using the Black-Scholes model.

Rainbow Option

A rainbow option payoff depends on the relative price performance of two or more
assets. A rainbow option gives the holder the right to buy or sell the best or worst of two
securities, or options that pay the best or worst of two assets.

Rainbow options are popular because of the lower premium cost of the structure relative
to the purchase of two separate options. The lower cost reflects the fact that the payoff is
generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

*  Minimum of two assets — The option holder has the right to buy(sell) one of two risky
assets, whichever one is worth less.

+  Maximum of two assets — The option holder has the right to buy(sell) one of two risky
assets, whichever one 1s worth more.

The following rainbow options speculate/hedge on two equity assets.

Function

Purpose

minassetbystulz

Calculate the European rainbow option price on
minimum of two risky assets using the Stulz option
pricing model.
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Function Purpose

minassetsensbystulz Calculate the European rainbow option prices and
sensitivities on minimum of two risky assets using the
Stulz pricing model.

maxassetbystulz Calculate the European rainbow option price on

maximum of two risky assets using the Stulz option
pricing model.

maxassetsensbystulz

Calculate the European rainbow option prices and
sensitivities on maximum of two risky assets using the
Stulz pricing model.

Vanilla Option

A vanilla option is a category of options that includes only the most standard
components. A vanilla option has an expiration date and straightforward strike price.
American-style options and European-style options are both categorized as vanilla

options.

The payoff for a vanilla option is as follows:

For a call: max(St-K,0)

For a put: max(K — St,0)

where:

St is the price of the underlying asset at time ¢.

K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function
optstockbybaw

optstocksensbybaw

optstockbycrr

Purpose

Calculate the American options prices using the
Barone-Adesi-Whaley option pricing model.

Calculate the American options prices and sensitivities
using the Barone-Adesi-Whaley option pricing model.

Calculate the price of a European, Bermuda, or
American stock option using a CRR tree.
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Function
optstockbyeqgp

optstockbyfd
optstocksensbhyfd
optstockbyitt
optstockbystt

optstockbylr

optstocksensbylr

optstockbybls
optstocksensbybls
optstockbyrgw
optstocksensbyrgw
optstockbybjs

optstocksensbybjs

optstockbyls

optstocksensbyls

Purpose

Calculate the price of a European, Bermuda, or
American stock option using an EQP tree.

Calculate vanilla option prices using finite difference
method.

Calculate vanilla option prices and sensitivities using
finite difference method.

Calculate the price of a European, Bermuda, or
American stock option using an I'TT tree.

Calculate the price of a European, Bermuda, or
American stock option using an STT tree.

Calculate the price of a European, Bermuda, or
American stock option using the Leisen-Reimer (LR)
binomial tree model.

Calculate the price and sensitivities of a European,
Bermuda, or American stock option using the Leisen-
Reimer (LR) binomial tree model.

Price options using the Black-Scholes option pricing
model.

Calculate option prices and sensitivities using the
Black-Scholes option pricing model.

Calculate American call option prices using the Roll-
Geske-Whaley option pricing model.

Calculate American call option prices and sensitivities
using the Roll-Geske-Whaley option pricing model.

Price American options using the Bjerksund-Stensland
2002 option pricing model.

Calculate American option prices and sensitivities
using the Bjerksund-Stensland 2002 option pricing
model.

Price vanilla options using the Longstaff-Schwartz
model.

Calculate vanilla option prices and sensitivities using
the Longstaff-Schwartz model.
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Function Purpose
instoptstock Specify a European or Bermuda option.

Bermuda Put and Call Schedule

A Bermuda option resembles a hybrid of American and European options. You exercise
it on predetermined dates only, usually monthly. In Financial Instruments Toolbox
software, you indicate the relevant information for a Bermuda option in two input
matrices:

+ Strike — Contains the strike price values for the option.

+ ExerciseDates — Contains the schedule when you can exercise the option.
Spread Option
A spread option is an option written on the difference of two underlying assets. For

example, a European call on the difference of two assets X1 and X2 would have the
following pay off at maturity:

max(X1- X2-K,0)
where:

K is the strike price.

The following functions support spread options.

Function Purpose

spreadbykirk Price European spread options using the Kirk pricing model.

spreadsensbykirk Calculate European spread option prices and sensitivities
using the Kirk pricing model.

spreadbybjs Price European spread options using the Bjerksund-Stensland
pricing model.

spreadsensbybjs Calculate European spread option prices and sensitivities
using the Bjerksund-Stensland pricing model.

spreadbyfd Price European or American spread options using the
Alternate Direction Implicit (ADI) finite difference method.
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Function Purpose

spreadsensbyfd Calculate price and sensitivities of European or American
spread spread options using the Alternate Direction Implicit
(ADI) finite difference method.

spreadbyls Price European or American spread options using Monte Carlo
simulations.
spreadsensbyls Calculate price and sensitivities for European or American

spread options using Monte Carlo simulations.

Forwards Option

A forward option is a non-standardized contract between two parties to buy or to sell

an asset at a specified future time at a price agreed upon today. The buyer of a forward
option contract has the right to hold a particular forward position at a specific price

any time before the option expires. The forward option seller holds the opposite forward
position when the buyer exercises the option. A call option is the right to enter into a
long forward position and a put option is the right to enter into a short forward position.
A closely related contract is a futures contract. A forward is like a futures in that it
specifies the exchange of goods for a specified price at a specified future date. The table
below displays some of the characteristics of forward and futures contracts.

Forwards Futures

Customized contracts Standardized contracts

Over the counter traded Exchange traded

Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Daily changes are settled day by day
Margin required) (Margin required)

Delivery usually takes place Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity
depends on the relationship between the delivery price (K) and the underlying price (Sy)
at that time, is:

For a long position: fr =Sy —K
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For a short position: fp = K-Sy
The following functions support pricing a forwards option.

Function Purpose

optstockbyblk Price options on forwards using the Black option
pricing model.

optstocksensbyblk Determine option prices and sensitivities on forwards
using the Black pricing model.

Futures Option

A future option is a standardized contract between two parties to buy or sell a specified
asset of standardized quantity and quality for a price agreed upon today (the futures
price) with delivery and payment occurring at a specified future date, the delivery date.
The contracts are negotiated at a futures exchange, which acts as an intermediary
between the two parties. The party agreeing to buy the underlying asset in the future,
the "buyer" of the contract, is said to be "long", and the party agreeing to sell the asset in
the future, the "seller" of the contract, is said to be "short."

Forwards Futures

Customized contracts Standardized contracts

Over the counter traded Exchange traded

Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Daily changes are settled day by day
Margin required) (Margin required)

Delivery usually takes place Delivery usually never happens

A futures contract is the delivery of item </ at time T and:

There exists in the market a quoted price F(¢,T), which is known as the futures price
at time ¢t for delivery of JJ at time T.

+ The price of entering a futures contract is equal to zero.

During any time interval [¢,s], the holder receives the amount F(s,T)—- F(,T) (this
reflects instantaneous marking to market).
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At time T, the holder pays F(T',T) and is entitled to receive J. Note that F(T',T)
should be the spot price of J at time 7.

The following functions support pricing a futures option.

Function Purpose

optstockbyblk Price options on futures using the Black option pricing
model.

optstocksensbyblk Determine option prices and sensitivities on futures

using the Black pricing model.

See Also

asianbycrr | asianbyegp | asianbyitt | asianbykv | asianbylevy

| asianbyls | asiansensbykv | asiansensbylevy | asiansensbyls |
assetbybls | assetsensbybls | barrierbycrr | barrierbyeqgp | barrierbyitt
| basketbyju | basketbyls | basketsensbyju | basketsensbyls |
basketstockspec | basketstockspec | cashbybls | cashsensbybls |
chooserbybls | compoundbycrr | compoundbyeqp | compoundbyitt |
crrprice | crrsens | crrtimespec | crrtree | eqpprice | egpsens |
egptimespec | eqptree | gapbybls | gapsensbybls | impvbybjs | impvbyblk
| impvbybls | impvbyrgw | instasian | instbarrier | instcompound |
instlookback | instoptstock | ittprice | ittsens | itttimespec | itttree
| Tookbackbycrr | lookbackbycvgsg | lookbackbyeqgp | lookbackbyitt |
lookbackbyls | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls
| Tookbacksensbyls | Irtimespec | Irtree | maxassetbystulz |
maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybjs | optstockbyblk | optstockbybls |
optstockbycrr | optstockbyeqp | optstockbyitt | optstockbylr |
optstockbyls | optstockbyrgw | optstocksensbybjs | optstocksensbyblk
| optstocksensbybls | optstocksensbylr | optstocksensbyls |
optstocksensbyrgw | spreadbybjs | spreadbykirk | spreadbyls |
spreadsensbybjs | spreadsensbykirk | spreadsensbyls | stockspec |
supersharebybls | supersharesensbybls | treepath | trintreepath

Related Examples
“Understanding Equity Trees” on page 3-2
“Pricing Equity Derivatives Using Trees” on page 3-120
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“Creating Instruments or Properties” on page 1-19

“Graphical Representation of Equity Derivative Trees” on page 3-132
“Compute Option Prices on a Forward” on page 11-1250

“Compute Forward Option Prices and Delta Sensitivities” on page 11-1317
“Compute the Option Price on a Future” on page 11-1251

“Pricing European Call Options Using Different Equity Models” on page 3-153
“Pricing Asian Options” on page 3-104

“Equity Derivatives Using Closed-Form Solutions” on page 3-140

“Pricing Using the Bjerksund-Stensland Model” on page 3-148

More About

“Basket Option” on page 3-27

“Asian Option” on page 3-24

“Spread Option” on page 3-36

“Vanilla Option” on page 3-34

“Rainbow Option” on page 3-33
“Bjerksund-Stensland 2002 Model” on page 3-143
“Roll-Geske-Whaley Model” on page 3-142

“Black Model” on page 3-141

“Digital Option” on page 3-32

“Supported Energy Derivatives” on page 3-41

“Supported Interest-Rate Instruments” on page 2-2
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In this section...

“Asian Option” on page 3-41
“Vanilla Option” on page 3-42
“Spread Option” on page 3-43
“Lookback Option” on page 3-44
“Forwards Option” on page 3-46
“Futures Option” on page 3-47

Asian Option

An Asian option is a path-dependent option with a payoff linked to the average value
of the underlying asset during the life (or some part of the life) of the option. They are
similar to lookback options in that there are two types of Asian options: fixed (average
price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the
underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:
*  Fixed call (average price option): max(0,S  —X)
Fixed put (average price option): max(0,X —S )
Floating call (average strike option): max(0,S—-S_)
Floating put (average strike option): max(0,S, —.S)

where:
S,, is the average price of underlying asset.
S is the price of the underlying asset.

X 1is the strike price (applicable only to fixed Asian options).

3-41



3 Equity Derivatives

3-42

S,, is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose

asianbyls Price European or American Asian options using the Longstaff-
Schwartz model.

asiansensbyls Calculate prices and sensitivities of European or American
Asian options using the Longstaff-Schwartz model.

asianbykv Price European geometric Asian options using the Kemna
Vorst model.

asiansensbykv Calculate prices and sensitivities of European geometric Asian
options using the Kemna Vorst model.

asianbylevy Price European arithmetic Asian options using the Levy model.

asiansensbylevy Calculate prices and sensitivities of European arithmetic Asian
options using the Levy model.

Vanilla Option

A vanilla option is a category of options that includes only the most standard
components. A vanilla option has an expiration date and straightforward strike price.
American-style options and European-style options are both categorized as vanilla

options.

The payoff for a vanilla option is as follows:

For a call: max(St-K,0)

For a put: max(K — St,0)

where:

St is the price of the underlying asset at time ¢.

K is the strike price.

The following functions support specifying or pricing a vanilla option.
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Function Purpose

optstockbyls Price European, Bermudan, or American vanilla
options using the Longstaff-Schwartz model.

optstocksensbyls Calculate European, Bermudan, or American vanilla
option prices and sensitivities using the Longstaff-
Schwartz model.

optstockbyfd Calculate vanilla option prices using finite difference
method.
optstocksensbyfd Calculate vanilla option prices and sensitivities using

finite difference method.

Spread Option

A spread option is an option written on the difference of two underlying assets. For
example, a European call on the difference of two assets X1 and X2 would have the
following pay off at maturity:

max(X1- X2-K,0)

where:
K is the strike price.

The following functions support spread options.

Function Purpose

spreadbykirk Price European spread options using the Kirk pricing model.

spreadsensbykirk Calculate European spread option prices and sensitivities
using the Kirk pricing model.

spreadbybjs Price European spread options using the Bjerksund-Stensland
pricing model.

spreadsensbybjs Calculate European spread option prices and sensitivities
using the Bjerksund-Stensland pricing model.

spreadbyfd Price European or American spread options using the
Alternate Direction Implicit (ADI) finite difference method.
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Function Purpose

spreadsensbyfd Calculate price and sensitivities of European or American
spread options using the Alternate Direction Implicit (ADI)
finite difference method.

spreadbyls Price European or American spread options using Monte Carlo
simulations.
spreadsensbyls Calculate price and sensitivities for European or American

spread options using Monte Carlo simulations.

For more information on using spread options, see “Pricing European and American
Spread Options” on page 3-49.

Lookback Option

A lookback option is a path-dependent option based on the maximum or minimum value
the underlying asset (e.g. electricity, stock) achieves during the entire life of the option.
Basically the holder of the option can ‘look back’ over time to determine the payoff. This
type of option provides price protection over a selected period, reduces uncertainties
with the timing of market entry, moderates the need for the ongoing management, and
therefore, is usually more expensive than vanilla options.

Lookback call options give the holder the right to buy the underlying asset at the lowest
price. Lookback put options give the right to sell the underlying asset at the highest
price.

Financial Instruments Toolbox software supports two types of lookback options: fixed
and floating. The difference is related to how the strike price is set in the contract. Fixed
lookback options have a specified strike price and the option pays out the maximum of
the difference between the highest (lowest) observed price of the underlying during the
life of the option and the strike. Floating lookback options have a strike price determined
at maturity, and it is set at the lowest (highest) price of the underlying reached during
the life of the option. This means that for a floating strike lookback call (put), the holder
has the right to buy (sell) the underlying asset at its lowest (highest) price observed
during the life of the option. So, there are a total of four lookback option types, each with
its own characteristic payoff formula:

Fixed call: max(0,S_ —X)

Fixed put: max(0,X - S )




Supported Energy Derivatives

Floating call: max(0,S-S_, )

Floating put: max(0,S__—S)
where:

S .. is the maximum price of underlying asset.

S, is the minimum price of underlying asset.
S 1s the price of the underlying asset at maturity.
X 1is the strike price.

The following functions support lookback options.

Function Purpose

lookbackbycvgsg Calculate prices of European lookback fixed and floating strike
options using the Conze-Viswanathan and Goldman-Sosin-
Gatto models.

lookbacksensbycvgsg Calculate prices and sensitivities of European fixed and
floating strike lookback options using the Conze-Viswanathan
and Goldman-Sosin-Gatto models.

lookbackbyls Calculate prices of lookback fixed and floating strike options
using the Longstaff-Schwartz model.

lookbacksensbyls Calculate prices and sensitivities of lookback fixed and floating
strike options using the Longstaff-Schwartz model.

Lookback options and Asian options are instruments used in the electricity market

to manage purchase timing risk. Electricity purchasers cover part of their expected
electricity consumption on the forward market to avoid the volatility and limited
liquidity of the spot market. Using Asian options as a hedging tool is a passive approach
to solving the purchase timing problem. An Asian option instrument diminishes the
wrong timing risk but it also reduces any potential benefit to the buyer from falling
prices. On the other hand, lookback options allow the purchasers to buy electricity at the
lowest price, but as mentioned before, this instrument is more expensive than Asian and
vanilla options.
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Forwards Option

A forward option is a non-standardized contract between two parties to buy or to sell

an asset at a specified future time at a price agreed upon today. The buyer of a forward
option contract has the right to hold a particular forward position at a specific price

any time before the option expires. The forward option seller holds the opposite forward
position when the buyer exercises the option. A call option is the right to enter into a
long forward position and a put option is the right to enter into a short forward position.
A closely related contract is a futures contract. A forward is like a futures in that it
specifies the exchange of goods for a specified price at a specified future date. The table
below displays some of the characteristics of forward and futures contracts.

Forwards Futures

Customized contracts Standardized contracts

Over the counter traded Exchange traded

Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Daily changes are settled day by day
Margin required) (Margin required)

Delivery usually takes place Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity
depends on the relationship between the delivery price (K) and the underlying price (Sy)
at that time, is:

For a long position: fr =Sy —K
For a short position: fp =K —Sp
The following functions support pricing a forwards option.

Function Purpose

optstockbyblk Price options on forwards using the Black option
pricing model.

optstocksensbyblk Determine option prices and sensitivities on forwards
using the Black pricing model.
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Futures Option

A future option is a standardized contract between two parties to buy or sell a specified
asset of standardized quantity and quality for a price agreed upon today (the futures
price) with delivery and payment occurring at a specified future date, the delivery date.
The contracts are negotiated at a futures exchange, which acts as an intermediary
between the two parties. The party agreeing to buy the underlying asset in the future,
the "buyer" of the contract, is said to be "long", and the party agreeing to sell the asset in
the future, the "seller" of the contract, is said to be "short."

Forwards Futures

Customized contracts Standardized contracts

Over the counter traded Exchange traded

Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no Daily changes are settled day by day
Margin required) (Margin required)

Delivery usually takes place Delivery usually never happens

A futures contract is the delivery of item </ at time T and:

There exists in the market a quoted price F(¢,T), which is known as the futures price
at time ¢ for delivery of J at time 7.

* The price of entering a futures contract is equal to zero.

During any time interval [Z,s], the holder receives the amount F(s,T)- F(,T) (this
reflects instantaneous marking to market).

At time T, the holder pays F(T,T) and is entitled to receive <J. Note that F(T',T)
should be the spot price of J at time 7.

The following functions support pricing a futures option.

Function Purpose

optstockbyblk Price options on futures using the Black option pricing
model.

optstocksensbyblk Determine option prices and sensitivities on futures

using the Black pricing model.
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Pricing European and American Spread Options

Pricing European and American Spread Options

This example shows how to price and calculate sensitivities for European and American
spread options using various techniques. First, the price and sensitivities for a European
spread option is calculated using closed form solutions. Then, price and sensitivities

for an American spread option is calculated using finite difference and Monte Carlo
simulations. Finally, further analysis is conducted on spread options with different range
of inputs.

Spread options are options on the difference of two underlying asset prices. For example,
a call option on the spread between two assets will have the following payoff at maturity:

max(X; - X - K,0)

A1 is the price of the first underlying asset, %2 is the price of the second

XX

where

underlying asset, and K is the strike price. At maturity, if the sprea is greater

than the strike price K , the option holder will exercise the option and gain the difference
between the spread and the strike price. If the spread is less than 0, the option holder
will not exercise the option, and the payoff is 0. Spread options are frequently traded in
the energy market. Two examples are:

+  Crack spreads: Options on the spread between refined petroleum products and
crude oil. The spread represents the refinement margin made by the oil refinery by
"cracking" the crude oil into a refined petroleum product.

+  Spark spreads: Options on the spread between electricity and some type of fuel. The
spread represents the margin of the power plant, which takes fuel to run its generator
to produce electricity.

Overview of the Pricing Methods

There are several methods to price spread options, as discussed in [1]. This example uses
the closed form, finite difference, and Monte Carlo simulations to price spread options.
The advantages and disadvantages of each method are discussed below:

+ Closed form solutions/approximations of partial differential equations (PDE) are
advantageous because they are very fast, and extend well to computing sensitivities
(Greeks). However, closed form solutions are not always available, for example for
American spread options.
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* The finite difference method is a numerical procedure to solve PDEs by discretizing
the price and time variables into a grid. A detailed analysis of this method can be
found in [2]. It can handle cases where closed form solutions are not available. Also,
finite difference extends well to calculating sensitivities because it outputs a grid of
option prices for a range of underlying prices and times. However, it is slower than
the closed form solutions.

+ Monte Carlo simulation uses random sampling to simulate movements of the
underlying asset prices. It handles cases where closed solutions do not exist. However,
it usually takes a long time to run, especially if sensitivities need to be calculated.

Pricing a European Spread Option
The following example demonstrates the pricing of a crack spread option.

A refiner is concerned about its upcoming maintenance schedule and needs to protect
against decreasing crude oil prices and increasing heating oil prices. During the
maintenance the refiner needs to continue providing customers with heating oil to meet
their demands. The refiner's strategy is to use spread options to manage its hedge.

On January 2013, the refiner buys a 1:1 crack spread option by purchasing heating oil
futures and selling crude oil futures. CLF14 WTI crude oil futures is at $100 per barrel
and HOF14 heating oil futures contract is at $2.6190 per gallon.

clear;

% Price, volatility, and dividend of heating oil
Pricelgallon = 2.6190; % $/gallon

Pricel = Pricelgallon*42; % $/barrel

Voll = 0.10;

Divl = 0.03;

% Price, volatility, and dividend of WTI crude oil
Price2 = 100; % $/barrel

Vol2 = 0.15;

Div2 = 0.02;

% Correlation of underlying prices
Corr = 0.3;

% Option type
OptSpec = “call”;

% Strike
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Strike = 5;

% Settlement date
Settle = "01-Jan-2013";

% Maturity
Maturity = "01-Jan-2014";

% Risk free rate
RiskFreeRate = 0.05;

The pricing functions take an interest rate term structure and stock structure as inputs.
Also, we need to specify which outputs we are interested in.

% Define RateSpec

Compounding = -1;

Basis = 1;

RateSpec = intenvset("ValuationDate", Settle, "StartDates”, Settle, ...
"EndDates”, Maturity, "Rates”, RiskFreeRate, "Compounding®, ...
Compounding, "Basis®, Basis);

% Define StockSpec for the two assets
StockSpecl = stockspec(Voll, Pricel, "Continuous®, Divl);
StockSpec2 = stockspec(Vol2, Price2, "Continuous®, Div2);

% Specify price and sensitivity outputs
OutSpec = {"Price", "Delta", "Gamma"};

The Financial Instruments Toolbox™ contains two types of closed form approximations
for calculating price and sensitivities of European spread options: the Kirk's
approximation (spreadbykirk, spreadsensbykirk) and the Bjerksund and Stensland
model (spreadbybjs, spreadsensbybjs) [3].

The function spreadsensbykirk calculates prices and sensitivities for a European
spread option using the Kirk's approximation.

% Kirk"s approximation

[PriceKirk, DeltaKirk, GammaKirk] = ...
spreadsensbykirk(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, "OutSpec®, OutSpec)

PriceKirk = 8.3636

DeltaKirk
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0.6108 -0.5590

GammaKirk =

0.0225 0.0249

The function spreadsensbybjs calculates the prices and sensitivities for a European
spread option using the Bjerksund and Stensland model. In [3], Bjerksund and Stensland
explains that the Kirk's approximation tends to underprice the spread option when

the strike is close to zero, and overprice when the strike is further away from zero. In
comparison, the model by Bjerksund and Stensland has higher precision.

% Bjerksund and Stensland model

[PriceBJS, DeltaBJS, GammaBJS] = ...
spreadsensbybjs(RateSpec, StockSpecl, StockSpec2, Settle,
Maturity, OptSpec, Strike, Corr, "“OutSpec®, OutSpec)

PriceBJS = 8.3662

DeltaBJS =

0.6115 -0.5597

GammaBJS =

0.0225 0.0248

A comparison of the calculated prices show that the two closed form models produce
similar results for price and sensitivities. In addition to delta and gamma, the functions
can also calculate theta, vega, lambda, and rho.

displayComparison("Kirk®, "BJS", PriceKirk, PriceBJS, DeltaKirk, DeltaBJS, GammaKirk,

Comparison of prices:

Kirk: 8.363641

BJS : 8.366158
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Comparison of delta:

Kirk: 0.610790 -0.558959

BJS : 0.611469 -0.559670

Comparison of gamma:

Kirk: 0.022533 0.024850

BJS : 0.022495 0.024819

Pricing an American Spread Option

Although the closed form approximations are fast and well suited for pricing European
spread options, they cannot price American spread options. Using the finite difference
method and the Monte Carlo method, an American spread option can be priced. In this
example, an American spread option is priced with the same attributes as the above
crack spread option.

The finite difference method numerically solves a PDE by discretizing the underlying
price and time variables into a grid. The Financial Instrument Toolbox™ contains the
functions spreadbyfd and spreadsensbyfd, which calculate prices and sensitivities
for European and American spread options using the finite difference method. For the
finite difference method, the composition of the grid has a large impact on the quality
of the output and the execution time. Generally, a finely discretized grid will result

in outputs that are closer to the theoretical value, but it comes at the cost of longer
execution times. The composition of the grid is controlled using optional parameters
PriceGridSize, TimeGridSize, AssetPriceMin and AssetPriceMax.

To indicate that we are pricing an American option, add an optional input of
AmericanOpt with a value of 1 to the argument of the function.

% Finite difference method for American spread option
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[PriceFD, DeltaFD, GammaFD, PriceGrid, AssetPricel, ...
AssetPrice2] = ...
spreadsensbyfd(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, "“OutSpec®, OutSpec, ...
"PriceCGridSize®, [500 500], "TimeGridSize®", 100, ...
"AssetPriceMin®, [0 0], "AssetPriceMax®, [2000 2000], --.
"AmericanOpt®, 1);

% Display price and sensitivities
PriceFD

PriceFD = 8.5463
DeltaFD

DeltaFD

0.6306 -0.5777

GammaFD
GammaFD =

0.0233 0.0259

The function spreadsensbyfd also returns a grid that contains the option prices for a
range of underlying prices and times. The grid of option prices at time zero, which is the
option prices at the settle date, can be plotted for a range of underlying prices.

% Plot option prices

figure;

mesh(AssetPricel, AssetPrice2, PriceGrid(:, :, 1)");

title("American Spread Option Prices for Range of Underlying Prices");
xlabel ("Price of underlying asset 17);

ylabel ("Price of underlying asset 27);

zlabel ("Price of spread option™);
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1on
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American Spread Option Prices for Range of Underlying Prices
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Price of underlying asset 2

An American style option can be priced by Monte Carlo methods using the least square
method of Longstaff and Schwartz [4]. The Financial Instruments Toolbox™ contains the
functions spreadbyls and spreadsensbyls, which calculate prices and sensitivities
of European and American options using simulations. The Monte Carlo simulation
method in spreadsensbyls generates multiple paths of simulations according to a
geometric Brownian motion (GBM) for the two underlying asset prices. Similar to the
finite difference method where the granularity of the grid determined the quality of the
output and the execution time, the quality of output and execution time of the Monte
Carlo simulation depends on the number of paths (NumTrials) and the number of time
periods per path (NumPeriods). Also, note that the results obtained by Monte Carlo
simulations are not deterministic. Each run will have different results depending on the
simulation outcomes.
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% To indicate that we are pricing an American option using the Longstaff
% and Schwartz method, add an optional input of |AmericanOpt| with a value
% of |1] to the argument of the function.

% Monte Carlo method for American spread option

[PriceMC, DeltaMC, GammaMC] = ...
spreadsensbyls(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, "OutSpec®, OutSpec, ...
“NumTrials®, 1000, “Antithetic®, true, “AmericanOpt”, 1)

PriceMC = 8.4999

DeltaMC

0.6325 -0.5931

GammaMC =

-0.0873 0.0391

The results of the two models are compared. The prices and sensitivities calculated by
the Longstaff and Schwartz method will vary at each run, depending on the outcome
of the simulations. It is important to note again that the quality of the results from
the finite difference method and the Monte Carlo simulation depend on the optional
input parameters. For example, increasing the number of paths (NumTrials) for the
spreadsensbyls function will result in more precise results at the cost of longer
execution times.

displayComparison("Finite Difference”, “"Monte Carlo®", PriceFD, PriceMC, DeltaFD, Deltal

Comparison of prices:

Finite Difference: 8.546285

Monte Carlo : 8.499894

Comparison of delta:
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Finite Difference: 0.630606 -0.577686

Monte Carlo : 0.632549 -0.593106

Comparison of gamma:

Finite Difference: 0.023273 0.025852

Monte Carlo : -0.087340 0.039120

Comparing Results for a Range of Strike Prices

As discussed earlier, the Kirk's approximation tends to overprice spread options when
the strike is further away from zero. To confirm this, a spread option will be priced with
the same attributes as before, but for a range of strike prices.

% Specify outputs
OutSpec = {"Price", "Delta"};

% Range of strike prices
Strike = [-25; -15; -5; 0; 5; 15; 25];

The results from the Kirk's approximation and the Bjerksund and Stensland model will
be compared against the numerical approximation from the finite difference method.
Since spreadsensbyfd can only price one option at a time, it is called in a loop for each
strike value. The Monte Carlo simulation (spreadsensbyls) with a large number of
trial paths could also be used as a benchmark, but the finite difference will be used for
this example.

% Kirk"s approximation

[PriceKirk, DeltaKirk] = ...
spreadsensbykirk(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, "“OutSpec®, OutSpec);

% Bjerksund and Stensland model

[PriceBJS, DeltaBJS] = ...
spreadsensbybjs(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, "“OutSpec®, OutSpec);
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% Fi
Pric
Delt
for

end
disp

Pric

Kirk
32.7
23.6
15.2
11.5
8.36

3.68

nite difference

eFD = zeros(numel(Strike), 1);
aFD = zeros(numel(Strike), 2);

i = 1:numel(Strike)

[PriceFD(i), DeltaFD(i,:)] = --.
spreadsensbyfd(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike(i), Corr, "OutSpec®, OutSpec, ...
"PriceCGridSize®, [500 500], "TimeGridSize®", 100, ...
"AssetPriceMin®, [0 0], “AssetPriceMax®, [2000 2000]);
layComparisonPrices(PriceKirk, PriceBJS, PriceFD, Strike)

es for range of strikes:

BJS FD
07787 32.672353 32.676040
05307 23.577099 23.580307
36908 15.228510 15.230919
60332 11.560332 11.562023
3641 8.366158 8.367212

9909 3.678862 3.680493

1.243753 1.219079 1.221866

The

difference in prices between the closed form and finite difference method is plotted
below. It is clear that as the strike moves further away from 0, the difference between
the Kirk's approximation and finite difference (red line) increases, while the difference
between the Bjerksund and Stensland model and finite difference (blue line) stays at the
same level. As stated in [3], the Kirk's approximation is overpricing the spread option

when the strike is far away from 0.

% Pl

ot of difference iIn price against the benchmark

figure;
plot(PriceKirk-PriceFD, “Color®, "red");
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Difference in Price

hold on;

plot(PriceBJS-PriceFD, “"Color®, "blue);

hold off;

title("Difference in Price Against Finite Difference”);
legend("Kirk®", "BJS", “Location®, "EastOutside®);
xlabel ("Strike®);

ax = gca;

ax.XTickLabel = Strike;

ylabel ("Difference in Price”);

Difference in Price Against Finite Difference
0.035 - . . : :

0.03 T ]

0.025 1 ]

0.02

Kirk

0.015 BUS

0.1

0.005

0005 . . . . .
-2h -15 -5 0 o 15 20

Strike

Next, the difference in delta between the closed form models and finite difference is
plotted. The top plot shows the difference in delta for the first asset, and the bottom plot
shows the difference in delta for the second asset. As seen from the small increments in
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the y-axis of order 10e-3, it can be seen that all three models (Kirk, BJS, finite difference)
produce similar values for delta.

% Plot of difference in delta of first asset against the benchmark
figure;

subplot(2, 1, 1);
plot(DeltaKirk(:,1)-DeltaFD(:,1), “Color®, "red");
hold on;

plot(DeltaBJS(:,1)-DeltaFD(:,1), "Color®, "blue®);
hold off;

title("Difference in Delta (Asset 1) Against FD");
legend("Kirk®", "BJS", “Location®, "EastOutside®);
xlabel ("Strike®);

ax = gca;

ax.XTickLabel = Strike;

ylabel ("Difference in Delta®);

% Plot of difference in delta of second asset against the benchmark
subplot(2, 1, 2);
plot(DeltaKirk(:,2)-DeltaFD(:,2), "Color®, "red");
hold on;

plot(DeltaBJS(:,2)-DeltaFD(:,2), "Color®, "blue®);
hold off;

title("Difference in Delta (Asset 2) Against FD");
legend("Kirk®", "BJS", “Location®, "EastOutside®);
xlabel ("Strike");

ax = gca;

ax.XTickLabel = Strike;

ylabel ("Difference in Delta®);
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Difference in Delta

Difference in Delta

| X jpDifference in Delta (Asset 1) Against FD

D -
Kirk
T BJS
-2 1
-3 . . . . .
25 -15 -5 0 5 15 25
Strike
. 1pDifference in Delta (Asset 2) Against FD
3 : : : : :
2 - -
l | Kirk
.’.___.f-’ f_.\“\‘ BJS
ot p ~ H\\:
— o _.___._____,_.-
-1 . — . . .
25 -15 -5 0 5 15 25

Strike

Analyzing Prices and Vega at Different Levels of Volatility

To further show the type of analysis that can be conducted using these models, the above
spread option will now be priced at different levels of volatility for the first asset. The
price and vega will be compared at three levels of volatility for the first asset: 0.1, 0.3,
and 0.5. The Bjerksund and Stensland model will be used for this analysis.

% Strike

Strike = 5;

% Specify output
OutSpec = {"Price”",

"Vega'};
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% Different levels of volatility for asset 1
Voll = [0.1, 0.3, 0.5];

StockSpecl = stockspec(Voll, Pricel, "“Continuous®, Divl);
% Bjerksund and Stensland model
[PriceBJS, VegaBJS] = ...
spreadsensbybjs(RateSpec, StockSpecl, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, "OutSpec®, OutSpec);
displaySummary(Voll, PriceBJS, VegaBJS)

Prices for different vol levels in asset 1:

8.366158
14.209112

21.795746

Asset 1 vega for different vol levels in asset 1:

15.534849
36.212192

38.794348

Asset 2 vega for different vol levels in asset 1:

29.437036
7.133657

-0.557852
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The change in the price and vega with respect to the volatility of the first asset is plotted
below. It can be observed that as the volatility of the first asset increases, the price of
the spread option also increases. Also, the changes in vega indicate that the price of the
spread option becomes more sensitive to the volatility of the first asset and less sensitive
to the volatility of the second asset.

figure;

% Plot price for BJS model

subplot(2, 1, 1);

plot(PriceBJS, "Color®, "red");
title("Price (BJS)");

legend("Price", “Location®, "EastOutside®);
xlabel ("Vol of Asset 1%);

ax = gca;

ax.XTick = 1:3;

ax.XTickLabel = Vol1l;

ylabel ("Price");

% Plot of vega for BJS model
subplot(2, 1, 2);

plot(VegaBJS(:,1), "Color®, “red");
hold on;

plot(VegaBJS(:,2), "Color®, "blue);
hold off;

title("Vega (BJS)");

legend("Asset 17, "Asset 2", "Location®, "EastOutside®);
xlabel ("Vol of Asset 1%);

ax = gca;

ax.XTick = 1:3;

ax.XTickLabel = Vol1l;

ax.YLim = [-1 40];

ylabel ("Vega®);
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Price (BJS)

20

20
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In this example, European and American spread options were priced and analyzed

using various techniques. The Financial Instruments Toolbox™ provides functions for
two types of closed form solutions (Kirk, BJS), the finite difference method, and the
Monte Carlo simulation method. The closed form solutions are well suited for pricing and
sensitivity calculation of European spread options because they are fast. However, they
cannot price American spread options. The finite difference method and Monte Carlo
method can price both European and American options. However, they are not as fast in
pricing European spread options as compared to closed form solutions.
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Utility Functions

function displayComparison(modell, model2, pricel, price2, deltal, delta2, gammal, gamr
% Pad the model name with additional spaces
additionalSpaces = numel(modell) - numel(model2);
if additionalSpaces > 0
model2 = [model2 repmat(”
else
modell = [modell repmat(® ", 1, abs(additionalSpaces))];

, 1, additionalSpaces)];

end

% Comparison of calculated prices
fprintf("Comparison of prices:\n");
fprintf("\n");

fprintf("%s: % f\n", modell, pricel);
fprintf("%s: % f\n", model2, price2);
fprintf("\n");

% Comparison of Delta
fprintf("Comparison of delta:\n");

fprintf("\n");
fprintf("%s: % F % f\n", modell, deltal(l), deltal(2));
fprintf("%s: % F % f\n", model2, delta2(l), delta2(2));
fprintf("\n");

% Comparison of Gamma
fprintf("Comparison of gamma:\n");
fprintf("\n");
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fprintf("%s: % F % f\n", modell, gammal(l), gammal(2));
fprintf("%s: % F % f\n", model2, gamma2(1l), gamma2(2));
fprintf("\n");

end

function displayComparisonPrices(PriceKirk, PriceBJS, PriceFD, Strike)
% Comparison of calculated prices
fprintf("Prices for range of strikes:\n");
fprintf("\n")
fprintf("Kirk \tBJS \tFD \n");
for 1 = 1:numel(Strike)
fprintfFC U\t A\t%\n", PriceKirk(i), PriceBJS(i), PriceFD(1));
end
end

function displaySummary(Voll, PriceBJS, VegaBJS)
% Display price
fprintf("Prices for different vol levels in asset 1:\n");
fprintf("\n");
for i1 = 1:numel(Voll)
fprintf("%f\n", PriceBJS(i));
end
fprintf("\n");

% Display vega for first asset
fprintf("Asset 1 vega for different vol levels in asset 1:\n");
fprintf("\n");
for i1 = 1:numel(Voll)
fprintfF("%M\n", VegaBJS(i,1));
end
fprintf("\n");

% Display vega for second asset
fprintf("Asset 2 vega for different vol levels in asset 1:\n");
fprintf("\n");
for 1 = 1:numel(Voll)
fprintfF("%M\n", VegaBJS(i,2));
end
end

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg
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| Tookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls
| optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd
| spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd |
spreadsensbykirk | spreadsensbyls
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This example shows different hedging strategies to minimize exposure in the Energy
market using Crack Spread Options.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their
input costs (crude oil) and output prices (refined products - gasoline, heating oil, diesel
fuel, etc). The differential between these two underlying commodities is referred to as a
Crack Spread. It represents the profit margin between crude oil and the refined products.

A Spread option is an option on the spread where the holder has the right, but not the
obligation, to enter into a spot or forward spread contract. Crack Spread Options are
often used to protect against declines in the crack spread or to monetise volatility or price
expectations on the spread.

Example 1: Protecting Margins using a 1:1 Crack Spread Option

A marketer is interested in protecting his gasoline margin since current prices are
strong. A crack spread option strategy will be used to mantain profits for the following
season. In March the June WTI crude oil futures is at $91.10 per barrel and RBOB
gasoline futures contract is at $2.72 per gallon. The marketer's strategy is a long crack
call involving purchasing RBOB gasoline futures and selling crude oil futures.

OldFormat = get(0, "“format®);
format bank

% Price and volatility of RBOB gasoline
Pricelgallon = 2.72; % $/gallon
Pricel = Pricelgallon * 42; % $/barrel
Voll = 0.39;

% Price and volatility of WTI crude oil
Price2 = 91.10; % $/barrel
Vol2 = 0.34;

% Assume the following data
% Spread Option

Strike = 20;

OptSpec = “call”;

Settle = "01-March-2013";
Maturity = "01-June-2013°7;
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Corr = 0.45; % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec

Rate = 0.035;

Compounding = -1;

Basis = 1;

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,
"EndDates”, Maturity, “Rates”, Rate, "Compounding®,
Compounding, °“Basis®, Basis);

% Define StockSpec for the two assets
StockSpecl = stockspec(Voll, Pricel);
StockSpec2 = stockspec(Vol2, Price2);
Price the Crack Spread Option

Use the function spreadbybjs in the Financial Instruments Toolbox(TM) to price the
spread option using the Bjerksund and Stensland model.

Price spreadbybjs(RateSpec, StockSpecl, StockSpec2, Settle,

Maturity, OptSpec, Strike, Corr)

Price
9.91

The 1:1 implied current crack spread between these two underlyings is $23.14 per barrel.
CrackSpread = Pricel - Price2 % $/barrel

CrackSpread =
23.14

Suppose that by expiration day, June crude oil prices decrease to $90.34 per barrel and
gasoline prices rise to $2.89 per gallon. The price changes cause the marketer's profit
margin (the new implied crack spread) to increase from $23.14/barrel to $31.04/barrel:

NewCrackSpread (2.89 * 42) - 90.34

NewCrackSpread
31.04
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Since the marketer purchased a long crack call on the $20 call, the option is now in the
money by $11.04

(NewCrackSpread - Strike)

ans =
11.04

The marketer paid $9.91 from the long crack call, this protects the margin by $1.13.
(NewCrackSpread - Strike - Price)

ans =
1.13

This strategy provides the marketer protection during spread increase scenarios.
Example 2: Creating a Floor with Crack Spread Options

A refiner is interested in covering its fixed and operating costs, but still profit from a
favorable move in the market. In March the May WTI crude oil futures is at $99.43 per
barrel and RBOB gasoline futures contract is at $3.04 per gallon. The refiner believes
that the spread between those commodities of $28.25 per barrel is favorable. Of this,
$11 corresponds to operating and fixed costs, and $17.25 is the net refining margin. The
refiner's strategy is to sell the crack spread by selling 10 RBOB gasoline futures and
buying 10 crude oil futures.

% Price and volatility of RBOB gasoline

Pricelgallon = 3.04; % $/gallon
Pricel = Pricelgallon * 42; % $/barrel
Voll = 0.35;

Divl = 0.0783;

% Price and volatility of WTI crude oil
Price2 = 99.43; % $/barrel

Vol2 = 0.38;

Div2 = 0.0571;

The refiner purchases 10 May RBOB gasoline crack spread puts with a strike price of
$25.
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% Spread Option
Strike = 25;
OptSpec = "put”;

Settle = "01-March-2013";
Maturity = "01-May-2013";
Corr = 0.30; % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec

Rate = 0.035;

Compounding = -1;

Basis = 1;

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,
"EndDates”, Maturity, “Rates”, Rate, "Compounding®,
Compounding, °“Basis®, Basis);

% Define StockSpec for the two assets

StockSpecl = stockspec(Voll, Pricel, “Continuous®, Divl);
StockSpec2 = stockspec(Vol2, Price2, “Continuous®, Div2);

Price the Crack Spread Option

Use the function spreadbyfd in the Financial Instruments Toolbox(TM) to price the
American spread option using the finite difference method.

Price spreadbyfd(RateSpec, StockSpecl, StockSpec2, Settle,

Maturity, OptSpec, Strike, Corr, "AmericanOpt®, 1)

Price =
6.61

By expiration, if option is exercised, the refiner would have hedged the cost of purchasing
10000 barrels of crude oil with the revenue of selling 10000 barrels of RBOB gasoline.
The futures contract represents 1000 barrels of crude oil and 42000 gallons of gasoline.

CostOfHedge = Price * 10000 % Option premium

CostOfHedge
66122 .24
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The hedge cost is $66386 to implement and guarantee that neither a fall in RBOB
gasoline prices or an increase in WTI crude oil prices will diminish the refining margin

below $25.
ProfitMargin = 14 * 10000 %$
ProfitMargin =
140000.00
CrackingMargin = ProfitMargin - CostOfHedge

CrackingMargin =
73877.76

This strategy allows a cracking margin of $73613.

Another strategy for the refiner could be to buy the $22 puts at a price of $5.38.

StrikeNew = 22;

PriceNew = spreadbyfd(RateSpec, StockSpecl, StockSpec2, Settle,
Maturity, OptSpec, StrikeNew, Corr, “AmericanOpt®, 1)

PriceNew =
5.36

This time the hedge would have cost $53823, but it also guarantees a $11 per barrel or
$56176 cracking margin.

NewCostOfHedge = PriceNew * 10000 % Option premium

NewCostOfHedge =
53570.97

NewProfitMargin = 11 * 10000

NewProfitMargin
110000.00
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CrackingMargin = NewProfitMargin - NewCostOfHedge

CrackingMargin =
56429.03

Example 3: Using Collars to Reduce the Cost of Hedging

A refiner is concerned about its cost of hedging and decides to use a collar strategy. In
April the crack spread is trading at $4.23 per barrel. The refiner is not convinced to
lock in this margin, but also wants to protect against price changes causing the refinery
margin to decrease less than $4 per barrel.

% Price and volatility of heating oil

Pricelgallon = 2.52; % $/gallon
Pricel = Pricelgallon * 42; % $/barrel
Voll = 0.38;

Divl = 0.0762;

% Price and volatility of WTI crude oil

Price2 = 101.61; % $/barrel
Vol2 = 0.34;
Div2 = 0.1169;

To accomplish the collar strategy the refiner sells a call spread option with a strike

of $4.50 and uses the premium income to offset the cost of purchasing a put spread
option with a strike of $4. This allows the refiner to benefit if market prices move up and
protects it if market prices move down.

% Assume the following data
Strike = [4.50:;4];
OptSpec = {"call";"put"};

Settle = "01-April-2013";
Maturity = "01-June-20137;
Corr = 0.35; % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec

Rate = 0.035;

Compounding = -1;

Basis = 1;

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,
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"EndDates”, Maturity, “Rates”, Rate, "Compounding®,
Compounding, °“Basis®, Basis);

% Define StockSpec for the two assets

StockSpecl = stockspec(Voll, Pricel, "“Continuous®, Divl);
StockSpec2 = stockspec(Vol2, Price2, "Continuous®, Div2);
Price the Crack Spread Options

Use the function spreadbybjs in the Financial Instruments Toolbox(TM) to price the
spread options using the Bjerksund and Stensland model.

Price = spreadbybjs(RateSpec, StockSpecl, StockSpec2, Settle,
Maturity, OptSpec, Strike, Corr)
Price =
7.06
6.43

The collar strategy allows the refiner to reduce the cost of the hedge to $0.63:

% CostOfHedge = Premium of Call - Premium of Put
CostOfHedge = Price(l) - Price(2)

CostOfHedge =
0.63

The refiner is protected if the crack spread narrows to less than $4. If the crack spread
widens to more than $4.50, the refiner will not benefit over this amount if he has hedged
100% of all its market exposure.

set(0, "“format®, OldFormat);

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg
| Tookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls

| optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd

| spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd |
spreadsensbykirk | spreadsensbyls
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This example shows how to price a swing option using a Monte Carlo simulation and

the Longstaff-Schwartz method. A risk-neutral simulation of the underlying natural

gas price is conducted using a mean-reverting model. The simulation results are used to
price a swing option based on the Longstaff-Schwartz method [6]. This approach uses a
regression technique to approximate the continuation value of the option. A comparison
is made between a polynomial and spline basis to fit the regression. Finally, the resulting
prices are analyzed against lower and upper price boundaries derived from standard
European and American options.

Overview of Swing Options

Swing options are popular financial instruments in the energy market, which provide
flexibility in the volume of the delivered asset. In order for energy consumers to protect
themselves against fluctuations in energy prices, they want to lock in a price by
purchasing a forward contract, called the baseload forward contract. However, consumers
do not know exactly how much energy will be used in the future, and energy commodities
such as electricity and gas cannot easily be stored. Therefore, the consumer wants the
flexibility to change the amount of energy that is delivered at each delivery date. Swing
options provide this flexibility. Thus, the full contract is composed of two parts: the
baseload forward contract, and the swing option component.

Swing options are generally over-the-counter (OTC) contracts that can be highly
customized. Therefore, there are many different types of constraints and penalties (see
[5] for more details). In this example, a swing option is priced where the only constraint
is the daily volume, which is known as the Daily Contract Quantity (DCQ). When a swing
right is exercised, the volume cannot go below the minimum DCQ (minDCQ), or go above
the maximum DCQ (maxDCQ).

There are several methods to price swing options, such as finite differences, simulation,
and dynamic programming based on trees [5]. This example uses the simulation-based
approach with the Longstaff-Schwartz method. The benefit of the simulation-based
approach is that the dynamics used to simulate the underlying asset price are separated
from the pricing algorithm. In the finite difference and tree based methods, the pricing
algorithm must be changed in order to consider pricing with a different underlying price
dynamic.
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Risk-Neutral Simulation of Natural Gas Price

In this example, natural gas is used as the underlying asset with the following mean-
reverting dynamic [8]:

d& = klp - logi& ) )15dt + oS.dW;

where "z is a standard Brownian motion. Applying Ito's Lemma to the logarithm of the

price leads to an Orstein-Uhlenbeck process:

dX, = k(6 - X )dt + od W,

where X = IDg:Sf', k=0 and @ is defined as:

& is the mean-reversion level that determines the value at which the simulated values
will revert to in the long run. ¥ is the mean-reversion speed that determines how

fast this reversion occurs. @ is the volatility of X We first proceed by simulating the
logarithm of the price. Afterwards, the exponential of the simulated values are taken to
obtain the prices.

The length of the simulation is for a one year period, with the initial price of 3.9 dollars
per MMBtu. The Monte Carlo simulation is conducted for 1,000 trials, with daily periods.
In practice, these parameters are calibrated against market data. In this example,

k=12 6=17 and ¢ = 39% The HWV object from the Financial Toolbox™ is used to
simulate the mean-reverting dynamics of the natural gas price.

% Settlement date
Settle = "01-Jun-2014-;

% Maturity Date
Maturity = "01-Jun-2015-;

% Actual/Actual basis
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Basis = 0;

% Initial log(price in $/MMBtu)
X0 = 10g(3-9);

% Volatility of log(price)
Sigma = 0.59;

% Number of trials in the Monte Carlo simulation
NumTrials =1000;

% Number of periods (daily)
NumPeriods = daysdif(Settle, Maturity, Basis);

% Daily time step
dt = 1/NumPeriods;

% Mean reversion speed of log(price)
Kappa = 1.2;

% Mean reversion level of log(price)
Theta = 1.7;

% Create HWV object
hwvobj = hwv(Kappa, Theta, Sigma, "StartState”, X0);

The simulation is run and plotted below.

% Set random number generator seed
savedState = rng(0, “twister®);

% Simulate gas prices

[Paths, Times] = hwvobj.simBySolution(NumPeriods, “NTRIALS",
"DeltaTime”, dt);

Paths = squeeze(exp(Paths));

% Restore random number generator state
rng(savedState);

% Plot paths

figure;

plot(Times, Paths);

title("Natural Gas Risk-Neutral Price Simulation®);
xlabel ("Time");

ylabel ("Price");

NumTrials,
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Frice
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Time

In this example, natural gas is used as the underlying asset with a mean-reverting
dynamic. However, the Longstaff-Schwartz algorithm can be used for other underlying
assets, such as electricity, with any underlying price dynamic.

Pricing the Swing Option

We consider a swing option with five swing rights at the strike of $4.69/MMBtu, which
can be exercised daily between the day after the settlement date and the maturity date.
The Daily Contract Quantity (DCQ) is 10,000 MMBtu, which is the average amount of
natural gas that the consumer expects to purchase on a given day. The consumer has the
flexibility to reduce the purchase amount (downswing) in one day to the minimum DCQ
of 2,500 MMBtu, or increase the purchase (upswing) to 15,000 MMBtu. The continuously
compounded annual risk-free rate is 1%.
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RateSpec is used to represent the interest-rate term structure. For the sake of
simplicity, we consider a flat interest-rate term structure in this example. The values
of RateSpec can be modified to accommodate any interest-rate curve. The function
hswingbyls in this example assumes a daily exercise if the ExerciseDates input is
empty.

% Define RateSpec

rfrate = 0.01;

Compounding = -1;

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,
“"EndDates”, Maturity, “Rates”, rfrate,
“Compounding®, Compounding, “Basis®, Basis);

% Daily exercise
% hswingbyls assumes daily exercise for empty ExerciseDates
ExerciseDates = []:

% Number of swings
NumSwings = 5;

% Daily Contract Quantity in MMBtu
DCQ = 10000;

% Minimum DCQ constraint in MMBtu
minDCQ = 2500;

% Maximum DCQ constraint in MMBtu
maxDCQ = 15000;

% Strike
Strike = 4.69;

The Longstaff-Schwartz method is a backward iteration algorithm, which steps backward
in time from the maturity date. At each exercise date, the algorithm approximates the
continuation value, which is the value of the option if it is not exercised. This is done

by fitting a regression against the values of the simulated prices and the discounted
future value of the option at the next exercise date. The future value of the option is
known as the algorithm moves backward in time. The continuation value is compared

to the sum of the payoff from immediate exercise (a downswing or upswing) and the
continuation value of a swing option with one less swing right. If this sum is smaller, the
option holder's optimal strategy is to not exercise on that date. The function hswingbyls
in this example uses this method to determine the optimal exercise strategy and the price
for swing options [1,2,7].
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As discussed earlier, the only constraint considered in this example is the minimum

and maximum DCQ. In this case, the optimal early exercise strategy is of a "bang-bang"
type. This means that when it is optimal to upswing or downswing at a certain exercise
date, the option holder should always exercise at the maximum or minimum DCQ to
maximize profit. The "bang-bang" exercise would not be the optimal strategy if, for
example, there is a terminal penalty based on volume. The pricing algorithm would then
need to additionally keep track of all possible volume levels, which significantly adds to
the runtime performance cost.

First, the swing option is priced using a 3rd order polynomial to fit the regression of
the Longstaff-Schwartz method. The function hswingbyls also generates a plot of the
regression between the underlying price and the continuation value at the exercise date
before maturity.

% Price swing option using 3rd order polynomial to fit Longstaff-Schwartz
% regression
tic;
useSpline = false;
SwingPrice = hswingbyls(Paths, Times, RateSpec, Settle, Maturity,
Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline,

[1. true)

SwingPrice = 5.6943e+04
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Continuation value

%104 Longstaff-Schwartz regression fit (3rd order polynomial)
8]

D i i: : i i i i i i i

0 2 4 6 8 10 12 14 16 18
Price of underlying asset

IsPolyTime = toc;

The above plot of the regression fit shows that the 3rd order polynomial does not fit
the continuation value perfectly, especially near the hinge and at the extreme points.
We now use the csaps function to fit the regression using a cubic smoothing spline
with a smoothing parameter of 0.7. The Curve Fitting Toolbox™ is required to run the
remainder of the example.

% Price swing option using smoothed splines to fit Longstaff-Schwartz
% regression

tic;

useSpline = true;

smoothingParam = 0.7;

SwingPriceSpline = hswingbyls(Paths, Times, RateSpec, Settle, Maturity,
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Continuation value

D i i : i i i i i

Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline,
smoothingParam, true)

SwingPriceSpline = 6.0729e+04

= 10* Longstaff-Schwartz regression fit (Spline)

0 2 4 6 8 10 12 14 16 18
Price of underlying asset

IsSplineTime = toc;

The plot of the regression shows that the cubic smoothing spline has a better fit against
the data, thus obtaining a more accurate value for the continuation values. However,
the comparison below shows that using a cubic smoothing spline takes longer than a 3rd
order polynomial.

% Print comparison of running times
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displayRunningTimes(IsPolyTime, IsSplineTime)

Comparison of running times:

3rd order polynomial: 5.08 sec

Spline : 15.01 sec

Also, it 1s important to note that the price represents solely the optionality component.
Hence, the price of the baseload forward contract is not included in the above calculated
price. Because we used a fixed strike price, the baseload contract has a non-zero value,
which can be calculated by:

-
)

BaseLoadPrice = E e E (5. - K)

where tf = LoV, 5r6 the exercise dates (see [3] for more details). The full price of
the contract, including the baseload and the swing option, is calculated below using the
swing option price from the smoothed cubic spline.

% Obtain discount factors
RS2 = intenvset(RateSpec, "StartTimes", 0, "EndTimes®, Times(2:end));
D = intenvget(RS2,"Disc");

% Calculate baseload price
BaselLoadPrice = DCQ.*mean(Paths(2:end, :)-Strike,2)"*D;

% Calculate full contract price, based on results from cubic spline LS
FullContractPrice = BaselLoadPrice + SwingPriceSpline

FullContractPrice = 1.2479e+05

Price Bounds

A lower bound for the swing option is a strip of European options, and the upper bound
is a strip of American options [4]. Compared to European options, swing options have
an early exercise premium at each exercise date, thus the price should be higher. The
price is lower than the American option strips, because only a single swing right can
be exercised at each exercise date. More than one strip can be exercised in a single day
using American options.
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The prices for the strips of the lower and upper bounds are calculated below to check that
the swing option prices are within these bounds. The European strip prices are calculated
against the last five excercise dates.

% Obtain discount factor for the last NumSwings exercise dates
D = D(end-NumSwings+1l:end);

% European lower bound

idx = size(Paths, 1):-1:(size(Paths, 1) - NumSwings + 1);
putBEuro = D"*mean(max(Strike - Paths(idx,:), 0),2);
callEuro = D"*mean(max(Paths(idx,:) - Strike, 0),2);
lowerBound = ((DCQ-minDCQ) - *putEuro+(maxDCQ-DCQ).*callEuro);

% American upper bound
[putAmer, callAmer] = hamericanPrice(Paths, Times, RateSpec, Strike);
upperBound = NumSwings.*((DCQ-minDCQ) - *putAmer+(maxDCQ-DCQ) . *cal 1Amer);

% Print price and lower/upper bounds
displaySummary(SwingPriceSpline, lowerBound, upperBound);

Comparison to lower and upper bounds:

Lower bound (European) : 44412.14
Swing Option Price : 60729.00

Upper bound (American) : 68181.42

The prices calculated using the Longstaff-Schwartz algorithm are within the lower and
upper bounds. The plot below shows a comparison between the swing option and the
upper and lower bounds as the number of swings increases. When the number of swings
is 1, the swing option is equivalent to an American option. In the case of daily exericse
opportunity (NumSwings = 365), the swing option is equivalent to the strip of European
options with daily maturity.
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Conclusion

The example shows the use of the Longstaff-Schwartz method to price a swing option
where the underlying asset follows a mean-reverting dynamic. A 3rd order polynomial
and a smoothed cubic spline are used to fit the regression in the Longstaff-Schwartz
algorithm to approximate the continuation value. It was shown that the smoothed cubic
spline fits the data better at the cost of slower performance. Finally, the resulting swing
option prices were checked against the lower bound of a strip of European options and an
upper bound of a strip of American options.
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Utility Functions

function displaySummary(SwingPriceSpline, lowerBound, upperBound)
fprintf("Comparison to lower and upper bounds:\n");

fprintf("\n")

fprintf("Lower bound (European) : %.2f\n", lowerBound);
fprintf("Swing Option Price : %.2f\n", SwingPriceSpline);
fprintf("Upper bound (American) : %.2f\n\n", upperBound);
end

function displayRunningTimes(IsPolyTime, IsSplineTime)
fprintf("Comparison of running times:\n");

fprintf("\n")

fprintf("3rd order polynomial: %.2F sec\n®, IsPolyTime);
fprintf("Spline : %.2F sec\n\n", IsSplineTime);
end

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg
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Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion

Simulating Electricity Prices with Mean-Reversion and Jump-
Diffusion
This example shows how to simulate electricity prices using a mean-reverting model
with seasonality and a jump component. The model is calibrated under the real-world
probability using historical electricity prices. The market price of risk is obtained from
futures prices. A risk-neutral Monte Carlo simulation is conducted using the calibrated

model and the market price of risk. The simulation results are used to price a Bermudan
option with electricity prices as the underlying.

Overview of the Model

Electricity prices exhibit jumps in prices at periods of high demand when additional,
less efficient electricity generation methods are brought on-line to provide a sufficient
supply of electricity. In addition, they have a prominent seasonal component, along with
reversion to mean levels. Therefore, these characteristics should be incorporated into a
model of electricity prices [2].

In this example, electricity price is modeled as:
log(P.) = fit) + X

P is the spot price of electricity. The logarithm of electricity price is modeled with

where
two components: FIE) and % The component F1t) is the deterministic seasonal part of

the model, and X: is the stochastic part of the model. Trigonometric functions are used to

model f'E) as follows [3]:

fit) =5 sin(2mt) + s;cos{2mt) + sz sin(4nwt) + 5, cos(4mt) + 5

i=1,.,5

where i are constant parameters, and [ is the annualized time factors. The

stochastic component X is modeled as an Ornstein-Uhlenbeck process (mean-reverting)
with jumps:

dX; = (a —rkX.)dt + od W, + J(uj, 0;)dII(A)
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The parameters & and ¥ are the mean-reversion parameters. Parameter 7 is the
d Wt is a standard Brownian motion. The jump size is Jlup o !, with

IIA)

volatility, an

normally distributed mean H/ and standard deviation “/. The Poisson process has

a jump intensity of A
Electricity Prices

Sample electricity prices from January 1, 2010 to November 11, 2013 are loaded and
plotted below. Prices contain the electricity prices, and PriceDates contain the dates
associated with the prices. The logarithm of the prices and annual time factors are
calculated.

% Load electricity prices and futures prices
load("electricity prices.mat");

% Plot electricity prices
figure;

plot(PriceDates, Prices);
datetick();
title("Electricity Prices");
xlabel ("Date”);
ylabel("Price ($)");
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Price ($)

Electricity Prices
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Date

% Obtain log of prices
logPrices = log(Prices);

% Obtain annual time factors from dates
PriceTimes = yearfrac(PriceDates(1l), PriceDates);

Calibration

First, the deterministic seasonality part is calibrated using the least squares method.

Since the seasonality function is linear with respect to the parameters “, the backslash
operator (nldivide) is used. After the calibration, the seasonality is removed from the

3-91



3 Equity Derivatives

3-92

logarithm of price. The logarithm of price and seasonality trends are plotted below. Also,
the de-seasonalized logarithm of price is plotted.

% Calibrate parameters for the seasonality model

seasonMatrix = @(t) [sin(2.*pi.*t) cos(2.*pi.*t) sin(4.-*pi.-*t) ...
cos(4.*pi.-*t) t ones(size(t, 1), 1)];

C = seasonMatrix(PriceTimes);

seasonParam = C\logPrices;

% Plot log price and seasonality line
figure;

subplot(2, 1, 1);

plot(PriceDates, logPrices);
datetick();

title("log(price) and Seasonality®);
xlabel ("Date*);

ylabel ("log(Prices)");

hold on;

plot(PriceDates, C*seasonParam, °“r");
hold off;

legend("log(Price)”, "seasonality”);

% Plot de-seasonalized log price

X = logPrices-C*seasonParam;

subplot(2, 1, 2);

plot(PriceDates, X);

datetick();

title("log(price) with Seasonality Removed®);
xlabel ("Date”);

ylabel ("log(Prices)");
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log(Frices)

log(price) and Seasonality

— log(Price)
—seasonality

2010 2011 2012 2013 2014
Date
log(price) with Seasonality Removed

2010 2011 2012 2013 2014
Date

The second stage is to calibrate the stochastic part. The model for X needs to be
discretized in order to conduct the calibration. To discretize, we assume a Bernoulli
process for the jump events. That is, there is at most one jump per day since we are
calibrating against daily electricity prices. The discretized equation is:

X =alt + ¢X._, + af

with probability (1 -44%) 4nq

t

X.=alt + X, + ol + u; + 0y
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with probability .Ju'll.t‘, where ¢ and "r- are independent standard normal random

variables, and @ = 1 - KAf The density function of X given -1 ig [1,4]:
_f'Xr X_-_l-' = |.|?..ﬁr.'JII'|'TJ_':X_- ..X:_J_: £ (1 - ANt |Jn||ir::;¥r X_-_l-'

1 .
2 P -(X -—aAt -@X _| - up)”
Ny(&|X-y) = (2m(o” + 07)) “expl— s ¢X1 -~ 1 |

2o+ a3l
)

1 -

. —-(X —adt - X, _,)"°

JHHF:|;¥:4E:_1|:|2EU_"_EXIJ: - ﬂ'z - qf} ot |
a2

The parameters & = (& @ 1, 0707, 4;

likelihood function:

can be calibrated by minimizing the negative log

ming - Z log( flX:|X-1))

t=1

subject to ¢ <1,6°>0,0;>0,0 2AAt =1

The first inequality constraint, ® < 1, is equivalent to ¥ * 0. The volatilities @ and 77
must be positive. In the last inequality, AAL g between 0 and 1, because it represents

the probability of a jump occurring in 4t time. In this example, we take 24f to be one

day. Consequently, there is at most 365 jumps in one year. The function mle from the
Statistics and Machine Learning Toolbox™ is well suited to solve the above maximum
likelihood problem.

% Prices at t, X(t)
Pt = X(2:end);

% Prices at t-1, X(t-1)
Pt 1 = X(1:end-1);

% Discretization for daily prices
dt = 1/365;
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% PDF for discretized model

mrjpdf = @(Pt, a, phi, mu_J, sigmaSq, sigmaSq_J, lambda) ...
lambda.*exp((-(Pt-a-phi.*Pt_1-mu_J)."2)./ ...
(2.*(sigmaSqg+sigmasSg_J))).* (1/sqgrt(2.*pi.*(sigmaSqg+sigmasSqg_J))) + ...
(1-1ambda) - *exp((-(Pt-a-phi . *Pt_1) .~2)/(2.-*sigmaSq))-* ...
(1/sgre(2.*pi-*sigmaSq));

% Constraints:

% phi <1 (k > 0)

% sigmasSq > O

% sigmaSq_J > 0

t# 0 <= lambda <= 1

1b [-Inf -Inf -Inf O O 0];
ub [Inf 1 Inf Inf Inf 1];

X

% Initial values
X0 = [0 0 0 var(X) var(X) 0.5];

% Solve maximum likelihood
params = mle(Pt, "pdf" ,mrjpdf, "start”,x0, " lowerbound” , lb, "upperbound” ,ub, . . .
"optimfun®, "fmincon®);

% Obtain calibrated parameters
alpha = params(1)/dt

alpha = -20.1060

kappa = params(2)/dt
kappa = 176.7465

mu_J = params(3)

mu_J = 0.2044

sigma = sqrt(params(4)/dt)
sigma = 3.0930

sigma_J = sqrt(params(5))
sigma_J = 0.2659

lambda = params(6)/dt

lambda = 98.3358
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Monte Carlo Simulation

The calibrated parameters and the discretized model allow us to simulate electricity
prices under the real-world probability. The simulation is conducted for approximately

2 years with 10,000 trials. It exceeds 2 years to include all the dates in the last month of
simulation. This is because the expected simulation prices for the futures contract expiry
date is required in the next section to calculate the market price of risk. The seasonality
is added back on the simulated paths. A plot for a single simulation path is plotted below.

rng default;

% Simulate for about 2 years
nPeriods = 365*2+20;
nTrials = 10000;
nl = randn(nPeriods,nTrials);
n2 randn(nPeriods, nTrials);
= binornd(1, lambda*dt, nPeriods, nTrials);
SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
sigma*sqrt(dt)*nl1(i,:) + j(i,:).*(mu_Jd+sigma_J*n2(i,:>));

[

end

% Add back seasonality

SimPriceDates = daysadd(PriceDates(end),0:nPeriods-1);
SimPriceTimes = yearfrac(PriceDates(1l), SimPriceDates);

CSim = seasonMatrix(SimPriceTimes);

logSimPrices = SimPrices + repmat(CSim*seasonParam,1l,nTrials);

% Plot logarithm of Prices and simulated logarithm of Prices
figure;

subplot(2, 1, 1);

plot(PriceDates, logPrices);

hold on;

plot(SimPriceDates(2:end), logSimPrices(2:end,1), “red");
seasonLine = seasonMatrix([PriceTimes; SimPriceTimes(2:end)])*seasonParam;
plot([PriceDates; SimPriceDates(2:end)], seasonLine, “"green®);
hold off;

datetick();

title("Actual log(price) and Simulated log(price)*”);

xlabel ("Date”);

ylabel ("log(price)”);

legend("market®, “"simulation®);
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% Plot prices and simulated prices
PricesSim = exp(logSimPrices);
subplot(2, 1, 2);

plot(PriceDates, Prices);

hold on;

plot(SimPriceDates, PricesSim(:,1),

hold off;
datetick();

title("Actual Prices and Simulated Prices®);

xlabel ("Date®);
ylabel("Price ($)");
legend("market®, “simulation®);

"red");

Actual log(price) and Simulated log(price)

Date

G
market
o 5 simulation
o
E 4 I A | 7
1) i |
= f
=40 |
2 1 1 1 1 1
2010 2011 2012 2013 2014 2015 2016
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Actual Prices and Simulated Prices
200 T T T T T
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ey 150 simulation
2 100 5
=
o
E,D -
'IJ 1 1 1 1 1
2010 2011 2012 2013 2014 2015 2016
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Calibration of the Market Price of Risk

Up to this point, the parameters were calibrated under the real-world probability.
However, in order to price options, we need the simulation under the risk-neutral
probability. To obtain this, we calculate the market price of risk from futures prices to
derive the risk-neutral parameters. Suppose that there are monthly futures contracts
available on the market, which are settled daily during the contract month. For example,
such futures for the PJM electricity market is listed on the Chicago Mercantile Exchange
[5].

The futures are settled daily during the contract month. Therefore, we obtain daily
futures values by assuming the futures value is constant for the contract month. The
expected futures prices from the real-world measure are also needed to calculate the
market price of risk. This can be obtained from the simulation conducted in the previous
section.

% Obtain daily futures prices
FutPricesDaily = zeros(size(SimPriceDates));
for i=1l:nPeriods
idx = Find(year(SimPriceDates(i)) == year(FutExpiry) & ...
month(SimPriceDates(i)) == month(FutExpiry));
FutPricesDaily(i) = FutPrices(idx);
end

% Calculate expected futures price under real-world measure
SimPricesExp = mean(PricesSim, 2);

To calibrate the market price of risk against market futures values, we use the following
equation:

F, it e
logl=) = —ge™ e mds

F,

where 't is the observed futures value at time £, and E

1s the expected value under the

real-world measure at time . The equation was obtained using the same methodology as
described in [3]. We assume that the market price of risk is fully driven by the Brownian

motion. The market price of risk, ™, can be solved by discretizing the above equation
and solving a system of linear equations.

% Setup system of equations
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t0 = yearfrac(PriceDates(1l), FutValuationDate);
tz = SimPriceTimes-t0;
b = -log(FutPricesDaily(2:end) ./ SimPricesExp(2:end)) ./ ...

(sigma.*exp(-kappa.-*tz(2:end)));

A = (1/kappa) -*(exp(kappa-*tz(2:end)) - exp(kappa.*tz(l:end-1)));
A = tril(repmat(A", size(A,1l), 1));

% Precondition to stabilize numerical inversion

P = diag(l./diag(A));

b = P*b;

A = P*A;

% Solve for market price of risk
riskPremium = A\b;

Simulation of Risk-neutral Prices

Once ™ is obtained, risk-neutral simulation can be conducted using the following

dynamics:
X =alAt + ¢pX._| —om._;At + af

1 -AAt)

with probability ' and

X = alt + X, —om,_,At + o + u; + 045

with probability AAL

nTrials = 10000;
nl = randn(nPeriods, nTrials);
n2 = randn(nPeriods, nTrials);

J = binornd(1, lambda*dt, nPeriods, nTrials);

SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
sigma*sqrt(dt)*nl(i,:) - sigma*dt*riskPremium(i-1) + ...
J@,) . *(mu_Jd+sigma_J*n2(i,:>));
end
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% Add back seasonality
CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1l,nTrials);

% Convert log(Price) to Price
PricesSim = exp(logSimPrices);

The expected values from the risk-neutral simulation are plotted against the market
futures values. This confirms that the risk-neutral simulation closely reproduces the
market futures values.

% Obtain expected values from the risk-neutral simulation
SimPriceskExp = mean(PricesSim,2);
fexp = zeros(size(FutExpiry));
for 1 = 1l:size(FutExpiry,1)
dx = SimPriceDates == FutExpiry(i);
if sum(idx)==
fexp(i) = SimPricesExp(idx);
end

end

% Plot expected values from the simulation against market futures prices
figure;

subplot(2,1,1);

plot(FutExpiry, FutPrices(l:size(FutExpiry,1)),"-*");

hold on;

plot(FutkExpiry, fexp, "*r");

datetick();

hold off;

title("Market Futures Prices and Simulated Futures Prices®);
xlabel ("Date”);

ylabel ("Price");

legend("market®, “simulation®, "Location®, “NorthWest®");
subplot(2,1,2);

plot(SimPriceDates(2:end), riskPremium);

datetick();

title("Market Price of Risk");

xlabel ("Date”);

ylabel ("Market Price of Risk");
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Pricing a Bermudan Option

The risk-neutral simulated values can be used as input into the function
optpricebysimin the Financial Instruments Toolbox™ to price an European,
Bermudan, or American option on electricity prices. Below, we price a two year
Bermudan call option with two exercise opportunities. The first excercise is after one
year, and the second is at the maturity of the option.

% Settle, maturity of option

Settle = FutValuationDate;

Maturity = addtodate(FutValuationDate, 2, “year");
% Create interest rate term structure
riskFreeRate = 0.01;
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Basis = 0;

Compounding = -1;

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,
"EndDates”, Maturity, “Rate”, riskFreeRate, "Compounding®,
Compounding, °“Basis®, Basis);

% Cutoff simulation at maturity

endldx = find(SimPriceDates == Maturity);
SimPrices = PricesSim(l:endldx,:);

Times = SimPriceTimes(1:endldx) - SimPriceTimes(1);

% Bermudan call option with strike 60, two exercise opportunities, after

% one year and at maturity.

OptSpec = “call”;

Strike = 60;

ExerciseTimes = [Times(366) Times(end)];

Price = optpricebysim(RateSpec, SimPrices, Times, OptSpec, Strike,
ExerciseTimes)

Price = 1.1588
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This example shows how to price a European Asian option using four methods in

the Financial Instruments Toolbox™. This example demonstrates two closed form
approximations (Levy and Kemna-Vorst), a lattice model (Cox-Ross-Rubinstein), and
Monte Carlo simulation. All these methods involve some tradeoffs between numerical
accuracy and computational efficiency. This example also demonstrates how variations
in spot prices, volatility, and strike prices affect option prices on European Vanilla and
Asian options.

Overview of Asian Options

Asian options are securities with payoffs that depend on the average value of an
underlying asset over a specific period of time. Underlying assets can be stocks,
commodities, or financial indices.

Two types of Asian options are found in the market: average price options and average
strike options. Average price options have a fixed strike value and the average used is
the asset price. Average strike options have a strike equal to the average value of the

underlying asset.

The payoff at maturity of an average price European Asian option is:
max(0, Savg - K for a call
max(0, K - Savg) ¢ 4 put

The payoff at maturity of an average strike European Asian option is:

max(0, 5t - Savg) ¢ 4 call

max(0, Savg = St) for 4 put

where Savg is the average price of underlying asset, St is the price at maturity of
underlying asset, and K is the strike price.

The average can be arithmetic or geometric.
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Pricing Asian Options Using Closed Form Approximations

The Financial Instruments Toolbox™ supports two closed form approximations for
European Average Price options. The Levy model is based on the arithmetic mean of
the price of the underlying during the life of the option [1]. The Kemna-Vorst method
provides a closed form pricing solution to geometric averaging options [2].

The pricing functions asianbylevy and asianbykv take an interest rate term structure
and stock structure as inputs.

Consider the following example:

% Create RateSpec from the interest rate term structure
StartDates = "12-March-2014";

EndDates = "12-March-2020";

Rates = 0.035;

Compounding = -1;

Basis = 1;

RateSpec = intenvset("ValuationDate®, StartDates, °"StartDates”, StartDates, ..
"EndDates”, EndDates, “Rates”, Rates, "Compounding®, ...
Compounding, °“Basis®, Basis);

% Define StockSpec with the underlying asset information
Sigma = 0.20;
AssetPrice = 100;

StockSpec = stockspec(Sigma, AssetPrice);

% Define the Asian option
Settle = "12-March-2014";
ExerciseDates = "12-March-2015";
Strike = 90;

OptSpec = “call”;

% Levy model approximation
PriceLevy = asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates);
% Kemna-Vorst closed form model
PricekKV = asianbykv(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates);

% Comparison of calculated prices for the geometric and arithmetic options
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% using different closed form algorithms.
displayPricesClosedForm(PricelLevy, PriceKV)

Comparison of Asian Arithmetic and Geometric Prices:

Levy: 12.164734
Kemna-Vorst: 11.862580
Computing Asian Options Prices Using the Cox-Ross-Rubinstein Model

In addition to closed form approximations, the Financial Instruments Toolbox™ supports
pricing European Average Price options using CRR trees via the function asianbycrr.

The lattice pricing function asianbycrr takes an interest rate tree (CRRTree ) and
stock structure as inputs. We can price the previous options by building a CRRTree using
the interest rate term structure and stock specification from the example above.

% Create the time specification of the tree

NPeriods = 20;

TreeValuationDate = "12-March-2014";

TreeMaturity = "12-March-2024";

TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);

% Build the tree
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec);

% Price the European Asian option using the CRR lattice model.

% The function "asianbycrr® computes prices of arithmetic and geometric

% Asian options.

AvgType = {"arithmetic”;"geometric"};

AmericanOpt = O;

PriceCRR20 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, ...
AmericanOpt, AvgType);

% Increase the numbers of periods in the tree and compare results
NPeriods = 40;

TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);
CRRTree = crrtree(StockSpec, RateSpec, TimeSpec);

PriceCRR40 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates, ...
AmericanOpt, AvgType);
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% Display prices
displayPricesCRR(PriceCRR20, PriceCRR40)

Asian Prices using the CRR lattice model:

PriceArithmetic(CRR20): 11.934380
PriceArithmetic(CRR40): 12.047243
PriceGeometric (CRR20): 11.620899

PriceGeometric (CRR40): 11.732037

The results above compare the findings from calculating both geometric and arithmetic
Asian options, using CRR trees with 20 and 40 levels. It can be seen that as the number
of levels increases, the results approach the closed form solutions.

Calculating Prices of Asian Options Using Monte Carlo Simulation

Another method to price European Average Price options with the Financial Instruments
Toolbox™ is via Monte Carlo simulations.

The pricing function asianbyls takes an interest rate term structure and stock
structure as inputs. The output and execution time of the Monte Carlo simulation
depends on the number of paths (NumTrials ) and the number of time periods per path (
NumPeriods).

We can price the same options of previous examples using Monte Carlo.

% Simulation Parameters
NumTrials = 500;
NumPeriods = 200;

% Price the arithmetic option

PriceAMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates, "NumTrials®, NumTrials, ...
“NumPeriods®, NumPeriods);

% Price the geometric option

PriceGMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates, "NumTrials®, NumTrials, ...
“NumPeriods®, NumPeriods, "AvgType®, AvgType(2));

% Use the antithetic variates method to value the options
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Antithetic = true;

PriceAMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates, "NumTrials®, NumTrials, “NumPeriods”, ...
NumPeriods, “Antithetic®, Antithetic);

PriceGMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates, "NumTrials®, NumTrials, “NumPeriods”, ...
NumPeriods, “Antithetic®, Antithetic, "AvgType”, AvgType(2));

% Display prices
displayPricesMonteCarlo(PriceAMC, PriceAMCAntithetic, PriceGMC, PriceGMCAntithetic)

Asian Prices using Monte Carlo Method:

Arithmetic Asian
Standard Monte Carlo: 11.674673
Variate Antithetic Monte Carlo: 12.101644
Geometric Asian
Standard Monte Carlo: 11.411848

Variate Antithetic Monte Carlo: 11.814271
The use of variate antithetic accelerates the conversion process by reducing the variance.

We can create a plot to display the difference between the geometric Asian price using
the Kemna-Vorst model, standard Monte Carlo and antithetic Monte Carlo.

nTrials = [50:5:100 110:10:250 300:50:500 600:100:2500]";

PriceKVVector = PriceKV * ones(size(nTrials));

PriceGMCVector = nan(size(nTrials));

PriceGMCAntitheticVector = nan(size(nTrials));

TimeGMCAntitheticVector = nan(length(nTrials),1);

TimeGMCVector = nan(length(nTrials),1);

idx = 1;

for iNumTrials = nTrials*

PriceGMCVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...

ExerciseDates, "NumTrials”®, iNumTrials, "NumPeriods”,...
NumPeriods, "AvgType®, AvgType(2));

PriceGMCAntitheticVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Se
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Asian Option Price

ExerciseDates, "NumTrials®, iNumTrials, “NumPeriods”, ...
NumPeriods, “Antithetic®, Antithetic, "AvgType”, AvgType(2));
idx = idx+1;
end

figure("menubar®, "none®, “numbertitle®, "off")

plot(nTrials, [PriceKVVector PriceGMCVector PriceGMCAntitheticVector]);

title "Variance Reduction by Antithetic”

xlabel “Number of Simulations”

ylabel "Asian Option Price”

legend("Kemna-Vorst®, "Standard Monte Carlo®, "Variate Antithetic Monte Carlo *, "loca

Variance Reduction by Antithetic
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12271 b
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Mumber of Simulations

The graph above shows how oscillation in simulated price is reduced through the use of
variate antithetic.
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Compare Pricing Model Results

Prices calculated by the Monte Carlo method will vary depending on the outcome of the
simulations. Increase NumTrials and analyze the results.

NumTrials = 2000;

PriceAMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Exerc
“NumTrials®, NumTrials, “NumPeriods®, NumPeriods, “"Antithetic”, Antithetic);

PriceGMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates, "NumTrials®, NumTrials, “NumPeriods”,...
NumPeriods, “Antithetic®, Antithetic, "AvgType”, AvgType(2));

% Comparison of calculated Asian call prices
displayComparisonAsianCallPrices(PricelLevy, PriceCRR40, PriceAMCAntithetic, PriceAMCAN

Comparison of Asian call prices:

Arithmetic Asian

Levy: 12.164734
Cox-Ross-Rubinstein: 12.047243
Monte Carlo(500 trials): 12.101644

Monte Carlo(2000 trials): 12.042440

Geometric Asian

Kemna-Vorst: 11.862580
Cox-Ross-Rubinstein: 11.732037
Monte Carlo(500 trials): 11.814271

Monte Carlo(2000 trials): 11.786485

The table above contrasts the results from closed approximation models against price
simulations implemented via CRR trees and Monte Carlo.
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Asian and Vanilla Call Options

Asian options are popular instruments since they tend to be less expensive than
comparable Vanilla calls and puts. This is because the volatility in the average value of
an underlier tends to be lower than the volatility of the value of the underlier itself.

The Financial Instruments Toolbox™ supports several algorithms for pricing vanilla
options. Let's compare the price of Asian options against their Vanilla counterpart.

First, we compute the price of a European Vanilla Option using the Black Scholes model.

PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, ExerciseDates,. ..
OptSpec, Strike);

% Comparison of calculated call prices.
displayComparisonVanillaAsian("Prices”, PriceBLS, PricelLevy, PriceKV)

Comparison of Vanilla and Asian Prices:

Vanilla BLS: 15.743809
Asian Levy: 12.164734

Asian Kemna-Vorst: 11.862580
Both geometric and arithmetic Asians price lower than their Vanilla counterpart.

We can analyze options prices at different levels of the underlying asset. Using the
Financial Instruments Toolbox™, it is possible to observe the effect of different
parameters on the price of the options. Consider for example, the effect of variations in
the price of the underlying asset.

StockPrices = (50:5:150)";
PriceBLS = nan(size(StockPrices));
PriceLevy = nan(size(StockPrices));
PricekKV = nan(size(StockPrices));
idx = 1;
for So StockPrices”
SP = stockspec(Sigma, So);
PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates, ...
OptSpec, Strike);
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1dx = idx+1;

end

figure("menubar”®,

"none”",

ExerciseDates);

ExerciseDates);

“numbertitle”,

“off")

plot(StockPrices, [PriceBLS PricelLevy PriceKkV]);

xlabel "Spot Price ($)"
ylabel "Option Price ($)"

title "Call Price Comparison*®

legend("Vanilla“,

Call Price Comparison

"Arithmetic Asian”®,

"Geometric Asian®, "location”,

70

50

40

Option Price ($)

20

Vanilla
Arithmetic Asian
Geometric Asian

50
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PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, Strike, Settle,...

PricekKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle, ...

"northwest”);
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It can be observed that the price of the Asian option is cheaper than the price of the
Vanilla option.

Additionally, it is possible to observe the effect of changes in the volatility of the
underlying asset. The table below shows what happens to Asian and Vanilla option prices
when the constant volatility changes.

Call Option (ITM)

Strike = 90 AssetPrice = 100

Volatility Levy Kemna-Vorst BLS
10% 11.3987 11.3121 13.4343
20% 12.1647 11.8626 15.7438
30% 13.6512 13.0338 18.8770
40% 15.4464 14.4086 22.2507

A comparison of the calculated prices show that Asian options are less sensitive to
volatility changes, since averaging reduces the volatility of the value of the underlying
asset. Also, Asian options that use arithmetic average are more expensive than those
that use geometric average.

Now, examine the effect of strike on option prices.

Strikes (90:5:120)";
NStrike length(Strikes);
PriceBLS = nan(size(Strikes));
PriceLevy = nan(size(Strikes));
PricekKV = nan(size(Strikes));
idx = 1;
for ST = Strikes”
SP stockspec(Sigma, AssetPrice);
PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates, ...
OptSpec, ST);

PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, ST, Settle, ...
ExerciseDates);

PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, ST, Settle,...
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Option Price ($)
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ExerciseDates);
1dx = idx+1;
end

figure("menubar®, "none®, “numbertitle®, "off")
plot(Strikes, [PriceBLS PricelLevy PricekV]);
xlabel ~“Strike Price ($)”

ylabel “Option Price ($)"

title "Effect of Strike on Option Prices”

legend("Vanilla®, "Arithmetic Asian®, "Geometric Asian®, "location”,

Effect of Strike on Option Prices

Vanilla

Geometric Asian

20 95 100 105 110 115 120
Strike Price (%)

"northeast”);

The figure above displays the option price with respect to strike price. Since call option
value decreases as strike price increases, the Asian call curve is under the Vanilla call
curve. It can be observed that the Asian call option is less expensive than the Vanilla call.
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Hedging

Hedging is an insurance to minimize exposure to market movements on the value of

a position or portfolio. As the underlying changes, the proportions of the instruments
forming the portfolio may need to be adjusted to keep the sensitivities within the
desired range. Delta measures the option price sensitivity to changes in the price of the
underlying.

Assume that we have a portfolio of two options with the same strike and maturity.
We can use the Financial Instruments Toolbox™ to compute Delta for the Vanilla and
Average Price options.

OutSpec = "Delta”;

% Vanilla option using Black Scholes
DeltaBLS = optstocksensbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
OptSpec, Strike, "OutSpec®, OutSpec);

% Asian option using Levy model
DeltalLevy = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates, "OutSpec®, OutSpec);

% Asian option using Kemna-Vorst method
DeltalLKV= asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
ExerciseDates, "OutSpec®, OutSpec);

% Delta Comparison
displayComparisonVanillaAsian("Delta”, DeltaBLS, DeltalLevy, DeltalKV)

Comparison of Vanilla and Asian Delta:

Vanilla BLS: 0.788666
Asian Levy: 0.852806

Asian Kemna-Vorst: 0.844986

The following graph demonstrates the behavior of Delta for the Vanilla and Asian options
as a function of the underlying price.

StockPrices = (40:5:120)";

NStockPrices = length(StockPrices);
DeltaBLS = nan(size(StockPrices));
DeltalLevy = nan(size(StockPrices));
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DeltaKV = nan(size(StockPrices));

idx = 1;
for SPrices = StockPrices”
SP = stockspec(Sigma, SPrices);
DeltaBLS(idx) = optstocksensbybls(RateSpec, SP, Settle, ...
ExerciseDates, OptSpec, Strike, "OutSpec®, OutSpec);

DeltalLevy(idx) = asiansensbylevy(RateSpec, SP, OptSpec, Strike, ...
Settle, ExerciseDates, "OutSpec®, OutSpec);

DeltakV(idx) = asiansensbykv(RateSpec, SP, OptSpec, Strike, ...
Settle, ExerciseDates, "OutSpec”, OutSpec);
1dx = idx+1;
end

figure("menubar®, "none®, “numbertitle®, "off")

plot(StockPrices, [DeltaBLS DeltalLevy DeltaKkV]);

xlabel ~“Spot Price ($)”

ylabel "Call Delta*

title "Delta Comparison (Strike Price = $90)"

legend("Vanilla®, "Arithmetic Asian®, "Geometric Asian®, "location®, "northwest®);
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Call Delta

Delta Comparison (Strike Price = $90)
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A Vanilla, or Asian, in the money (ITM) call option is more sensitive to price movements
than an out of the money (OTM) option. If the asset price is deep in the money, then it

is more likely to be exercised. The opposite occurs for an out of the money option. Asian
delta is lower for out of the money options and is higher for in the money options than its
Vanilla European counterpart. The geometric Asian delta is lower than the arithmetic
Asian delta.
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Utility Functions

function displayPricesClosedForm(PriceLevy, PriceKV)
fprintf("Comparison of Asian Arithmetic and Geometric Prices:\n");

fprintf("\n");

fprintf("Levy: %fF\n", PricelLevy);
fprintf("Kemna-Vorst: %f\n", PriceKV);
end

function displayPricesCRR(PriceCRR20, PriceCRR40)
fprintf("Asian Prices using the CRR lattice model:\n");
fprintf("\n");

fprintf("PriceArithmetic(CRR20): %f\n", PriceCRR20(1));
fprintf("PriceArithmetic(CRR40): %f\n", PriceCRR40(1));
fprintf("PriceGeometric (CRR20): %f\n", PriceCRR20(2));
fprintf("PriceGeometric (CRR40): %f\n", PriceCRR40(2));
end

function displayPricesMonteCarlo(PriceAMC, PriceAMCAntithetic, PriceGMC, PriceGMCAntitl
fprintf(“Asian Prices using Monte Carlo Method:\n");

fprintf("\n");

fprintf("Arithmetic Asian\n®);

fprintf("Standard Monte Carlo: %f\n", PriceAMC);

fprintf("Variate Antithetic Monte Carlo: %f\n\n", PriceAMCAntithetic);
fprintf("Geometric Asian\n®);

fprintf("Standard Monte Carlo: %f\n", PriceGMC);
fprintf("Variate Antithetic Monte Carlo: %f\n", PriceGMCAntithetic);
end

function displayComparisonAsianCallPrices(PricelLevy, PriceCRR40, PriceAMCAntithetic, Pi
fprintf("Comparison of Asian call prices:\n");

fprintf("\n");

fprintf("Arithmetic Asian\n®);

fprintf("Levy: %f\n", PricelLevy);
fprintf("Cox-Ross-Rubinstein: %f\n", PriceCRR40(1));

fprintf("Monte Carlo(500 trials): %f\n", PriceAMCAntithetic);
fprintf(“"Monte Carlo(2000 trials): %f\n", PriceAMCAntithetic2000);

fprintf("\n");

fprintf("Geometric Asian\n®);

fprintf("Kemna-Vorst: %F\n", PricekV);
fprintf("Cox-Ross-Rubinstein: %f\n", PriceCRR40(2));
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fprintf("Monte Carlo(500 trials): %f\n", PriceGMCAntithetic);
fprintf("Monte Carlo(2000 trials): %f\n", PriceGMCAntithetic2000);
end

function displayComparisonVanillaAsian(type, BLS, Levy, KV)
fprintf("Comparison of Vanilla and Asian %s:\n", type);

fprintf("\n");

fprintf(“Vanilla BLS: %f\n*, BLS);
fprintf("Asian Levy: %f\n", Levy);
fprintf("Asian Kemna-Vorst: %F\n", KV);
end
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Pricing Equity Derivatives Using Trees

3-120

In this section...

“Computing Instrument Prices” on page 3-120

“Computing Prices Using CRR” on page 3-121

“Computing Prices Using EQP” on page 3-123

“Computing Prices Using ITT” on page 3-125

“Computing Prices Using STT” on page 3-127

“Examining Output from the Pricing Functions” on page 3-129

“Graphical Representation of Equity Derivative Trees” on page 3-132

Computing Instrument Prices

The portfolio pricing functions crrprice, eqgpprice, and ittprice calculate the price
of any set of supported instruments based on a binary equity price tree, an implied

trinomial price tree, or a standard trinomial tree. These functions are capable of pricing
the following instrument types:

* Vanilla stock options

American and European puts and calls

+ Exotic options

Asian
Barrier
Compound
Lookback

Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is:

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

The syntax for eqpprice is:

[Price, PriceTree] = eqgpprice(EQPTree, InstSet, Options)

The syntax for ittprice is:
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Price = ittprice(ITTTree, ITTInstSet, Options)
The syntax for sttprice is:
[Price, PriceTree] = sttprice(STTTree, InstSet, Name, Value)

These functions require two input arguments: the equity price tree and the set of
instruments, InstSet, and allow a third optional argument.

Required Arguments

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an equal
probability equity price tree created using eqptree. ITTTree is an I'TT equity price
tree created using itttree. STTTree is a standard trinomial equity price tree created
using stttree. See “Building Equity Binary Trees” on page 3-3 and “Building Implied
Trinomial Trees” on page 3-8 to learn how to create these structures.

InstSet is a structure that represents the set of instruments to be priced independently
using the model.

Optional Argument

You can enter a third optional argument, Options, used when pricing barrier options.
For more specific information, see Appendix B.

These pricing functions internally classify the instruments and call the appropriate
individual instrument pricing function for each of the instrument types. The CRR pricing
functions are asianbycrr, barrierbycrr, compoundbycrr, lookbackbycrr, and
optstockbycrr. A similar set of functions exists for EQP, ITT, and STT pricing. You
can also use these functions directly to calculate the price of sets of instruments of the
same type. See the reference pages for these individual functions for further information.

Computing Prices Using CRR

Consider the following example, which uses the portfolio and stock price data in
the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB
workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.
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Name Size Bytes Class Attributes
BDTInstSet 1x1 27344 struct
BDTTree 1x1 7322 struct
BKInstSet 1x1 27334 struct
BKTree 1x1 8532 struct
CRRINnstSet 1x1 21066 struct
CRRTree 1x1 7086 struct
EQPInstSet 1x1 21066 struct
EQPTree 1x1 7086 struct
HIMInstSet 1x1 27336 struct
HIMTree 1x1 8334 struct
HWInstSet 1x1 27334 struct
HWTree 1x1 8532 struct
ITTInstSet 1x1 21070 struct
ITTTree 1x1 12660 struct
STTInstSet 1x1 21070 struct
STTTree 1x1 7782 struct
ZerolnstSet 1x1 17458 struct
ZeroRateSpec 1x1 2152 struct

CRRTree and CRRINstSet are the required input arguments to call the function
crrprice.

Use instdisp to examine the set of instruments contained in the variable CRRInstSet.

instdisp(CRRInstSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

1 OptStock call 105 01-Jan-2003 01-Jan-2005 1 Calll 10

2 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Putl 5

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Quantity

3 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui 102 0 Barrierl 1

Index Type UOptSpec UStrike USettle UExerciseDates UAmericanOpt COptSpec CStrike CSettle CExerciseDates
4 Compound call 130 01-Jan-2003 01-Jan-2006 1 put 5 01-Jan-2003 01-Jan-2005
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

5 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookbackl 7

6 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate Name Quantity

7 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic NaN NaN Asianl 4

8 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic NaN NaN Asian2 6

Note Because of space considerations, the compound option above (Index 4) has been
condensed to fit the page. The instdisp command displays all compound option fields
on your computer screen.

The instrument set contains eight instruments:
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* Two vanilla options (Cal 11, Putl)
* One barrier option (Barrierl)

*  One compound option (Compoundl)

*  Two lookback options (Lookbackl, Lookback?2)

* Two Asian options (Asianl, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the

price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument set.

Price = crrprice(CRRTree, CRRInstSet)

Price =

8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

Computing Prices Using EQP

Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-

file.

Name Si

BDTInstSet
BDTTree
BKInstSet
BKTree
CRRINnstSet
CRRTree
EQPInstSet
EQPTree
HIMInstSet
HIMTree
HWInstSet
HWTree

ze

1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1

Bytes

27344
7322
27334
8532
21066
7086
21066
7086
27336
8334
27334
8532

Class

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

3-123



3 Equity Derivatives

3-124

ITTInstSet 1x1 21070 struct
ITTTree 1x1 12660 struct
STTInstSet 1x1 21070 struct
STTTree 1x1 7782 struct
ZerolnstSet 1x1 17458 struct
ZeroRateSpec 1x1 2152 struct

EQPTree and EQPInstSet are the input arguments required to call the function
egpprice.

Use the command instdisp to examine the set of instruments contained in the variable
EQPInstSet.

instdisp(EQPInstSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

1 OptStock call 105 01-Jan-2003 01-Jan-2005 1 Calll 10

2 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Putl 5

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Quantity

3 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui 102 0 Barrierl 1

Index Type UOptSpec UStrike USettle UExerciseDates UAmericanOpt COptSpec CStrike CSettle CExerciseDates
4 Compound call 130 01-Jan-2003 01-Jan-2006 1 put 5 01-Jan-2003 01-Jan-2005
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

5 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookbackl 7

6 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate Name Quantity

7 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic NaN NaN Asianl 4

8 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic NaN NaN Asian2 6

>> instdisp(EQPInstSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

1 OptStock call 105 01-Jan-2003 01-Jan-2005 1 Calll 10

2 OptStock put 105 01-Jan-2003 01-Jan-2006 0 Putl 5

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Quantity

3 Barrier call 105 01-Jan-2003 01-Jan-2006 1 ui 102 0 Barrierl 1

Index Type UOptSpec UStrike USettle UExerciseDates UAmericanOpt COptSpec CStrike CSettle CExerciseDates
4 Compound call 130 01-Jan-2003 01-Jan-2006 1 put 5 01-Jan-2003 01-Jan-2005
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

5 Lookback call 115 01-Jan-2003 01-Jan-2006 0 Lookbackl 7

6 Lookback call 115 01-Jan-2003 01-Jan-2007 0 Lookback2 9

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate Name Quantity

7 Asian put 110 01-Jan-2003 01-Jan-2006 0 arithmetic NaN NaN Asianl 4

8 Asian put 110 01-Jan-2003 01-Jan-2007 0 arithmetic NaN NaN Asian2 6

Note Because of space considerations, the compound option above (Index 4) has been
condensed to fit the page. The instdisp command displays all compound option fields
on your computer screen.
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The instrument set contains eight instruments:

* Two vanilla options (Cal 11, Putl)

*  One barrier option (Barrierl)

*  One compound option (Compoundl)

*  Two lookback options (Lookbackl, Lookback?2)
+ Two Asian options (Asianl, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by egpprice.

Now use eqpprice to calculate the price of each instrument in the instrument set.
Price = eqpprice(EQPTree, EQPInstSet)
Price =

8.4791
2.6375
12.2632
3.5091
8.7941
12.9577
4.7444
3.9178

Computing Prices Using ITT

Consider the following example, which uses the portfolio and stock price data in
the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB
workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.

Name Size Bytes Class Attributes
BDTInstSet 1x1 27344 struct
BDTTree 1x1 7322 struct
BKInstSet 1x1 27334 struct
BKTree 1x1 8532 struct
CRRINstSet 1x1 21066 struct
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CRRTree 1x1 7086 struct
EQPInstSet 1x1 21066 struct
EQPTree 1x1 7086 struct
HIMInstSet 1x1 27336 struct
HIMTree 1x1 8334 struct
HWInstSet 1x1 27334 struct
HWTree 1x1 8532 struct
ITTInstSet 1x1 21070 struct
ITTTree 1x1 12660 struct
STTInstSet 1x1 21070 struct
STTTree 1x1 7782 struct
ZerolnstSet 1x1 17458 struct
ZeroRateSpec 1x1 2152 struct

ITTTree and 1TTInstSet are the input arguments required to call the function
ittprice. Use the command instdisp to examine the set of instruments contained in
the variable ITTInstSet.

instdisp(ITTInstSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

1 OptStock call 95 01-Jan-2006 31-Dec-2008 1 Calll 10

2 OptStock put 80 01-Jan-2006 01-Jan-2010 0 Putl 4

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Quantity

3 Barrier call 85 01-Jan-2006 31-Dec-2008 1 ui 115 0 Barrierl 1

Index Type UOptSpec UStrike USettle UExerciseDates UAmericanOpt COptSpec CStrike CSettle CExerciseDates
4 Compound call 99 01-Jan-2006 01-Jan-2010 1 put 5 01-Jan-2006 01-Jan-2010
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

5 Lookback call 85 01-Jan-2006 01-Jan-2008 0 Lookbackl 7

6 Lookback call 85 01-Jan-2006 01-Jan-2010 0 Lookback2 9

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate Name Quantity

7 Asian call 55 01-Jan-2006 01-Jan-2008 0 arithmetic NaN NaN Asianl 5

8 Asian call 55 01-Jan-2006 01-Jan-2010 0 arithmetic NaN NaN Asian2 7

The instrument set contains eight instruments:

* Two vanilla options (Cal 11, Putl)

*  One barrier option (Barrierl)

*  One compound option (Compoundl)

* Two lookback options (Lookbackl, Lookback?2)
+ Two Asian options (Asianl, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument set.



Pricing Equity Derivatives Using Trees

o
-

-
0

D

|

.6506
.6832
.4074
.2294
.5426
.1845
.2052
.6074

DWOOWNOPR

= ittprice(ITTTree,

ITTInstSet)

Computing Prices Using STT

Consider the following example, which uses the portfolio and stock price data in
the MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB

workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-

file.
Name

BDTInstSet
BDTTree
BKInstSet
BKTree
CRRINnstSet
CRRTree
EQPInstSet
EQPTree
HIMInstSet
HIMTree
HWInstSet
HWTree
ITTInstSet
ITTTree
STTInstSet
STTTree
ZerolnstSet
ZeroRateSpec

Size

1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1
1x1

Bytes

27344
7322
27334
8532
21066
7086
21066
7086
27336
8334
27334
8532
21070
12660
21070
7782
17458
2152

Class

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

Attributes

STTTree and STTInstSet are the input arguments required to call the function
sttprice. Use the command instdisp to examine the set of instruments contained in

the variable STTInstSet.
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instdisp(STTInstSet)

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

1 OptStock call 100 01-Jan-2009 01-Jan-2011 1 Calll 10

2 OptStock put 80 01-Jan-2009 01-Jan-2012 0 Putl 5

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt BarrierSpec Barrier Rebate Name Quantity

3 Barrier call 105 01-Jan-2009 01-Jan-2012 1 ui 115 0 Barrierl 1

Index Type UOptSpec UStrike USettle UExerciseDates UAmericanOpt COptSpec CStrike CSettle CExerciseDates
4 Compound call 95 01-Jan-2009 01-Jan-2012 1 put 5 01-Jan-2009 01-Jan-2011
Index Type OptSpec Strike Settle ExerciseDates AmericanOpt Name Quantity

5 Lookback call 90 01-Jan-2009 01-Jan-2012 0 Lookbackl 7

6 Lookback call 95 01-Jan-2009 01-Jan-2013 0 Lookback2 9

Index Type OptSpec Strike Settle ExerciseDates AmericanOpt AvgType AvgPrice AvgDate Name Quantity

7 Asian call 100 01-Jan-2009 01-Jan-2012 0 arithmetic NaN NaN Asianl 4

8 Asian call 100 01-Jan-2009 01-Jan-2013 0 arithmetic NaN NaN Asian2 6

The instrument set contains eight instruments:

+ Two vanilla options (Cal 11, Putl)

* One barrier option (Barrierl)

*  One compound option (Compound1l)

* Two lookback options (Lookbackl, Lookback?2)
* Two Asian options (Asianl, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by sttprice.

Now use sttprice to calculate the price of each instrument in the instrument set.

Price sttprice(STTTree, STTInstSet)

Price

4.5025
3.0603
3.7977
1.7090
11.7296
12.9120
1.6905
2.6203
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Examining Output from the Pricing Functions

The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the valuation date of the equity tree. The instrument
indexing within Price is the same as the indexing within InstSet.

In the CRR example, the prices in the Price vector correspond to the instruments in this
order.

InstNames = instget(CRRInstSet, “FieldName®,"Name®)

InstNames =

Calll
Putl
Barrierl
Compoundl
Lookbackl
Lookback?2
Asianl
Asian2

So, in the Price vector, the fourth element, 3.3241, represents the price of the fourth
instrument (Compoundl), and the sixth element, 11.7772, represents the price of the
sixth instrument (Lookback?2).

In the ITT example, the prices in the Price vector correspond to the instruments in this
order.

InstNames = instget(1TTInstSet, "FieldName®, "Name™)

InstNames =

Calll
Putl
Barrierl
Compoundl
Lookbackl
Lookback2
Asianl
Asian2

So, in the Price vector, the first element, 1.650, represents the price of the first
instrument (Cal11), and the eighth elements, 6.607, represents the price of the eighth
instrument (Asian?2).
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Price Tree Output for CRR

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)
you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.

PriceTree =

FinObj: "BinPriceTree”

PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double] [8x5 double]}
tObs: [0 1 2 3 4]

dObs: [731582 731947 732313 732678 733043]

The first field of this structure, FinObj, indicates that this structure represents a price
tree. The second field, PTree, is the tree holding the prices of the instruments in each
node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the
observation time and date of each level of PTree, with tObs using units in terms of
compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the
field within the PriceTree structure that contains the price tree with the price vectors
at every state. The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{l}

ans =
8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

With this interface, you can observe the prices for all instruments in the portfolio at a
specific time.

The function eqpprice also returns a price tree that you can examine in the same way.
Price Tree Output for ITT

If you call a pricing function with two output arguments, for example:
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[Price, PriceTree] = ittprice(1TTTree, ITTInstSet)
you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.
PriceTree =

FinObj: "TrinPriceTree”

PTree: {[8x1 double] [8x3 double] [8x5 double] [8x7 double] [8x9 double]}
tObs: [0 1 2 3 4]
dObs: [732678 733043 733408 733773 734139]

The first field of this structure, FinObj, indicates that this structure represents

a trinomial price tree. The second field, PTree is the tree holding the prices of the
instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs,
represent the observation time and date of each level of PTree, with tObs using units in
terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the
field within the PriceTree structure that contains the price tree with the price vectors
at every state. The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{l}

ans =

.6506
.6832
.4074
.2294
.5426
.1845
.2052
.6074

OWOOWNOER

With this interface, you can observe the prices for all instruments in the portfolio at a
specific time.

Prices for Lookback and Asian Options for Equity Trees

Lookback options and Asian options are path-dependent, and, as such, there are no
unique prices for any node except the root node. So, the corresponding values for
lookback and Asian options in the price tree are set to NaN, the only exception being the
root node. This becomes apparent if you examine the prices in the second node (tobs =
1) of the CRR price tree:
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PriceTree.PTree{2}

ans =

11.9176 0
0.9508 7.1914
16.4600 2.6672
2.5896 5.0000

NaN NaN
NaN NaN
NaN NaN
NaN NaN

Examining the prices in the second node (tobs = 1) of the I'TT price tree displays:

PriceTree.PTree{2}

ans =
3.9022 0 0
6.3736 13.3743 22.1915
5.6914 0 0
2.7663 3.8594 5.0000
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN
NaN NaN NaN

Graphical Representation of Equity Derivative Trees

You can use the function treeviewer to display a graphical representation of a tree,
allowing you to examine interactively the prices and rates on the nodes of the tree until
maturity. The graphical representations of CRR, EQP, and LR trees are equivalent to
Black-Derman-Toy (BDT) trees, given that they are all binary recombining trees. The
graphical representations of ITT and STT trees are equivalent to Hull-White (HW) trees,
given that they are all trinomial recombining trees. See “Graphical Representation of
Trees” on page 2-155 for an overview on the use of treeviewer with CRR trees, EQP
trees, LR trees, ITT trees, and STT trees and their corresponding option price trees.
Follow the instructions for BDT trees.

See Also

asianbycrr | asianbyeqp | asianbyitt | asianbystt | barrierbycrr
| barrierbyegp | barrierbyitt | barrierbystt | compoundbycrr |
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compoundbyeqgp | compoundbyitt | compoundbystt | crrprice | crrsens |
crrtimespec | crrtree | eqgpprice | egpsens | eqptimespec | eqptree |
instasian | instbarrier | instcompound | instlookback | instoptstock |
ittprice | ittsens | itttimespec | itttree | lookbackbycrr | lookbackbyeqp
| Tookbackbyitt | lookbackbystt | Irtimespec | Irtree | optstockbycrr

| optstockbyeqp | optstockbyitt | optstockbylr | optstockbystt

| optstocksensbylr | stockspec | sttprice | sttsens | treepath |
trintreepath

Related Examples
. “Understanding Equity Trees” on page 3-2

“Computing Equity Instrument Sensitivities” on page 3-134
. “Creating Instruments or Properties” on page 1-19

“Graphical Representation of Equity Derivative Trees” on page 3-132

“Pricing European Call Options Using Different Equity Models” on page 3-153

. “Pricing Asian Options” on page 3-104

More About
. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41

. “Supported Interest-Rate Instruments” on page 2-2
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Sensitivities can be reported either as dollar price changes or percentage price
changes. The delta, gamma, and vega sensitivities that the toolbox computes are dollar
sensitivities.

The functions crrsens, egpsens, ittsens, and sttsens compute the delta, gamma,
and vega sensitivities of instruments using a stock tree. They also optionally return the
calculated price for each instrument. The sensitivity functions require the same two
input arguments used by the pricing functions (CRRTree and CRRInstSet for CRR,
EQPTree and EQPInstSet for EQP, ITTTree and ITTInstSet for ITT, and STTTree
and STTInstSet for STT).

As with the instrument pricing functions, the optional input argument Options is also
allowed. You would include this argument if you want a sensitivity function to generate
a price for a barrier option as one of its outputs and want to control the method that the
toolbox uses to perform the pricing operation. See Appendix B or the derivset function
for more information.

For path-dependent options (lookback and Asian), delta and gamma are computed by
finite differences in calls to crrprice, eqpprice, ittprice, and sttprice. For the
other options (stock option, barrier, and compound), delta and gamma are computed from
the CRR, EQP, ITT, and STT trees and the corresponding option price tree. (See Chriss,
Neil, Black-Scholes and Beyond, pp. 308-312.)

CRR Sensitivities Example
The calling syntax for the sensitivity function is:
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

format bank
All = [Delta, Gamma, Vega, Price]
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All =
0.59 0.04 53.45 8.29
-0.31 0.03 67.00 2.50
0.69 0.03 67.00 12.13
-0.12 -0.01 -98.08 3.32
-0.40 -45926.32 88.18 7.60
-0.42 -112143.15 119.19 11.78
0.60 45926.32 49.21 4.18
0.82 112143.15 41.71 3.42

As with the prices, each row of the sensitivity vectors corresponds to the similarly
indexed instrument in CRRInstSet. To view the per-dollar sensitivities, divide each
dollar sensitivity by the corresponding instrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]
All =

0.07 0.00 6.45 8.29

-0.12 0.01 26.78 2.50

0.06 0.00 5.53 12.13

-0.04 -0.00 -29.51 3.32

-0.05 -6041.77 11.60 7.60

-0.04 -9522.02 10.12 11.78

0.14 10987.98 11.77 4.18

0.24 32771.92 12.19 3.42

ITT Sensitivities Example

The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet, Options)
Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat

warning("off", "fininst:itttree:Extrapolation®);
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

format bank
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All = [Delta, Gamma, Vega, Price]

All =
0.24 0.03 19.35 1.65
-0.43 0.02 49.69 10.68
0.35 0.04 12.29 2.41
-0.07 0.00 6.73 3.23
0.63 142945 .66 38.90 0.54
0.60 22703.21 68.92 6.18
0.32 -142945.66 18.48 3.21
0.67 -22703.21 17.75 6.61

As with the prices, each row of the sensitivity vectors corresponds to the similarly
indexed instrument in ITTInstSet.

Note: In this example, the extrapolation warnings are turned off before calculating
the sensitivities to avoid displaying many warnings on the Command Window as the
sensitivities are calculated.

If the extrapolation warnings are turned on

warning(“on", "fininst:itttree:Extrapolation™);
and ittsens is rerun, the extrapolation warnings scroll as the command executes:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)

Warning: The option set specified in StockOptSpec was too narrow for the
generated tree.

This made extrapolation necessary. Below is a list of the options that were
outside of the

range of those specified in StockOptSpec.

Option Type: “call*® Maturity: 01-Jan-2007 Strike=67.2897
Option Type: “put® Maturity: 01-Jan-2007 Strike=37.1528
Option Type: “put® Maturity: 01-Jan-2008 Strike=27.6066
Option Type: “put® Maturity: 31-Dec-2008 Strike=20.5132
Option Type: “call*® Maturity: 01-Jan-2010 Strike=164.0157
Option Type: “put® Maturity: 01-Jan-2010 Strike=15.2424

> In itttree>InterpOptPrices (line 680)
In itttree (line 285)
In stocktreesens>stocktreevega (line 193)
In stocktreesens (line 94)
In ittsens (line 79)

Delta =

0.24
-0.43
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Gamma =
0.
0.02
0.
0.00
142945 .66
22703.21

-142945.66
-22703.21

Vega =

Price =

=
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These warnings are a consequence of having to extrapolate to find the option price of
the tree nodes. In this example, the set of inputs options was too narrow for the shift
in the tree nodes introduced by the disturbance used to calculate the sensitivities. As
a consequence extrapolation for some of the nodes was needed. Since the input data is
quite close the extrapolated data, the error introduced by extrapolation is fairly low.

STT Sensitivities Example
The calling syntax for the sensitivity function is:
[Delta, Gamma, Vega, Price] = sttsens(STTTree, InstSet, Name, Value)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

3-137



3 Equity Derivatives

3-138

load deriv.mat
[Delta, Gamma, Vega, Price] = sttsens(STTTree, STTInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =
0.53 0.02 52.90 4_50
-0.09 0.00 42 .44 3.06
0.47 0.03 25.98 3.80
-0.06 0.00 -9.53 1.71
0.23 -186495 .25 70.38 11.73
0.33 -191186.43 92.92 12.91
0.57 186495 .25 25.81 1.69
0.66 191186.43 37.88 2.62

See Also

asianbycrr | asianbyeqp | asianbyitt | asianbystt | barrierbycrr

| barrierbyeqp | barrierbyitt | barrierbystt | compoundbycrr |
compoundbyeqgp | compoundbyitt | compoundbystt | crrprice | crrsens |
crrtimespec | crrtree | eqgpprice | eqpsens | eqptimespec | eqptree |
instasian | instbarrier | instcompound | instlookback | instoptstock |
ittprice | ittsens | itttimespec | itttree | lookbackbycrr | lookbackbyeqgp
| Tookbackbyitt | lookbackbystt | Irtimespec | Irtree | optstockbycrr

| optstockbyeqgp | optstockbyitt | optstockbylr | optstockbystt

| optstocksensbylr | stockspec | sttprice | sttsens | treepath |
trintreepath

Related Examples

. “Understanding Equity Trees” on page 3-2

. “Pricing Equity Derivatives Using Trees” on page 3-120

. “Graphical Representation of Equity Derivative Trees” on page 3-132

. “Creating Instruments or Properties” on page 1-19

. “Graphical Representation of Equity Derivative Trees” on page 3-132

. “Pricing European Call Options Using Different Equity Models” on page 3-153
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. “Pricing Asian Options” on page 3-104

More About

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41

. “Supported Interest-Rate Instruments” on page 2-2
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Equity Derivatives Using Closed-Form Solutions
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In this section...

“Introduction” on page 3-140

“Black-Scholes Model” on page 3-140

“Black Model” on page 3-141

“Roll-Geske-Whaley Model” on page 3-142
“Bjerksund-Stensland 2002 Model” on page 3-143
“Barone-Adesi-Whaley Model” on page 3-143

“Pricing Using the Black-Scholes Model” on page 3-144
“Pricing Using the Black Model” on page 3-146

“Pricing Using the Roll-Geske-Whaley Model” on page 3-147
“Pricing Using the Bjerksund-Stensland Model” on page 3-148

“Compute American Option Prices Using the Barone-Adesi and Whaley Option Pricing
Model” on page 3-150

Introduction

Financial Instruments Toolbox supports four types of closed-form solutions and
analytical approximations to calculate price and sensitivities (greeks) of vanilla options:
+  Black-Scholes model

*  Black model

* Roll-Geske-Whaley model

+ Bjerksund-Stensland 2002 model

Black-Scholes Model

The Black-Scholes model is one of the most commonly used models to price European
calls and puts. It serves as a basis for many closed-form solutions used for pricing
options. The standard Black-Scholes model is based on the following assumptions:

* There are no dividends paid during the life of the option.

* The option can only be exercised at maturity.
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*  The markets operate under a Markov process in continuous time.
* No commissions are paid.
* The risk-free interest rate is known and constant.

* Returns on the underlying stocks are log-normally distributed.

Note: The Black-Scholes model implemented in Financial Instruments Toolbox software
allows dividends. The following three dividend methods are supported:

* Cash dividend

+ Continuous dividend yield

*  Constant dividend yield
However, not all Black-Scholes closed-form pricing functions support all three dividend
methods. For more information on specifying the dividend methods, see stockspec.

Closed-form solutions based on a Black-Scholes model support the following tasks.

Task Function

Price European options with different dividends optstockbybls
using the Black-Scholes option pricing model.

Calculate European option prices and sensitivities |optstocksensbybls
using the Black-Scholes option pricing model.

Calculate implied volatility on European options impvbybls
using the Black-Scholes option pricing model.

Price European simple chooser options using Black- |chooserbybls
Scholes model.

For an example using the Black-Scholes model, see “Pricing Using the Black-Scholes
Model” on page 3-144.

Black Model

Use the Black model for pricing European options on physical commodities, forwards
or futures. The Black model supported by Financial Instruments Toolbox software is
a special case of the Black-Scholes model. The Black model uses a forward price as an
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underlier in place of a spot price. The assumption is that the forward price at maturity of
the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.

Task Function

Price European options on futures using the Black |optstockbyblk
option pricing model.

Calculate European option prices and sensitivities |optstocksensbyblk
on futures using the Black option pricing model.

Calculate implied volatility for European options impvbyblk
using the Black option pricing model.

For an example using the Black model, see “Pricing Using the Black Model” on page
3-146.

Roll-Geske-Whaley Model

Use the Roll-Geske-Whaley approximation method to price American call options paying
a single cash dividend. This model is based on the modification of the observed stock
price for the present value of the dividend and also supports a compound option to
account for the possibility of early exercise. The Roll-Geske-Whaley model has drawbacks
due to an escrowed dividend price approach which may lead to arbitrage. For further
explanation, see Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following tasks.

Task Function

Price American call options with a single cash optstockbyrgw
dividend using the Roll-Geske-Whaley option
pricing model.

Calculate American call prices and sensitivities optstocksensbyrgw
using the Roll-Geske-Whaley option pricing model.

Calculate implied volatility for American call impvbyrgw

options using the Roll-Geske-Whaley option pricing

model.
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For an example using the Roll-Geske-Whaley model, see “Pricing Using the Roll-Geske-
Whaley Model” on page 3-147.

Bjerksund-Stensland 2002 Model

Use the Bjerksund-Stensland 2002 model for pricing American puts and calls with
continuous dividend yield. This model works by dividing the time to maturity of the
option in two separate parts, each with its own flat exercise boundary (trigger price). The
Bjerksund-Stensland 2002 method is a generalization of the Bjerksund and Stensland
1993 method and is considered to be computationally efficient. For further explanation,
see Closed Form Valuation of American Options by Bjerksund and Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the following tasks.

Task Function

Price American options with continuous dividend |optstockbybjs
yield using the Bjerksund-Stensland 2002 option
pricing model.

Calculate American options prices and sensitivities |optstocksensbybjs
using the Bjerksund-Stensland 2002 option pricing
model.

Calculate implied volatility for American options impvbybjs
using the Bjerksund-Stensland 2002 option pricing
model.

For an example using the Bjerksund-Stensland 2002 model, see “Pricing Using the
Bjerksund-Stensland Model” on page 3-148.

Barone-Adesi-Whaley Model

The Barone-Adesi-Whaley model is used for pricing American vanilla options. Closed-
form solutions for a Barone-Adesi-Whaley model support the following tasks.

Task Function

Calculate the prices of an American call and optstockbybaw
put options using the Barone-Adesi-Whaley
approximation model.
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Task Function

Calculate the prices and sensitivities of an optstocksensbybaw
American call and put options using the Barone-
Adesi-Whaley approximation model.

Calculate the implied volatility for American impvbybaw
options using the Barone-Adesi-Whaley model.

For an example using the Barone-Adesi-Whaley model, see “Compute American Option
Prices Using the Barone-Adesi and Whaley Option Pricing Model” on page 3-150.

Pricing Using the Black-Scholes Model

Consider a European stock option with an exercise price of $40 on January 1, 2008 that
expires on July 1, 2008. Assume that the underlying stock pays dividends of $0.50 on
March 1 and June 1. The stock is trading at $40 and has a volatility of 30% per annum.
The risk-free rate is 4% per annum. Using this data, calculate the price of a call and a
put option on the stock using the Black-Scholes option pricing model:

Strike = 40;
AssetPrice = 40;
Sigma = .3;

Rates = 0.04;
Settle = "Jan-01-087;
Maturity = "Jul-01-087;

"March-01-2008";
*Jun-01-2008";

D
Div2
Create RateSpec and StockSpec:

RateSpec = intenvset("ValuationDate”, Settle, "StartDates”, Settle, "EndDates”,
Maturity, "Rates”, Rates, "Compounding”, -1);

StockSpec = stockspec(Sigma, AssetPrice, {"cash"}, 0.50,{Div1,Div2});

Define two options, one call and one put:

OptSpec = {"call”; "put"};

Calculate the price of the European options:

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =
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3.2063
3.4027

The first element of the Price vector represents the price of the call ($3.21); the second
1s the price of the put ($3.40). Use the function optstocksensbybls to compute six
sensitivities for the Black-Scholes model: de lta, gamma, vega, lambda, rho, and theta
and the price of the option.

The selection of output parameters and their order is determined by the optional input
parameter OutSpec. This parameter is a cell array of character vectors, each one
specifying a desired output parameter. The order in which these output parameters are
returned by the function is the same as the order of the character vectors contained in
OutSpec.

As an example, consider the same options as the previous example. To calculate their
Delta, Rho, Price, and Gamma, build the cell array OutSpec as follows:

OutSpec = {"delta”, “rho", “price”, “gamma“};

[Delta, Rho, Price, Gamma] =optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, "OutSpec®, OutSpec)

Delta =
0.5328
-0.4672
Rho =

8.7902
-10.8138

Price

3.2063
3.4027

Gamma

0.0480
0.0480

3-145



3 Equity Derivatives

3-146

Pricing Using the Black Model

Consider two European call options on a futures contract with exercise prices of $20
and $25 that expire on September 1, 2008. Assume that on May 1, 2008 the contract
is trading at $20 and has a volatility of 35% per annum. The risk-free rate is 4% per
annum. Using this data, calculate the price of the call futures options using the Black
model:

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;

Rates = 0.04;

Settle = "May-01-08";
Maturity = "Sep-01-087;
Create RateSpec and StockSpec:

RateSpec = intenvset("ValuationDate”, Settle, "StartDates”, Settle,...
"EndDates”, Maturity, “Rates”, Rates, "Compounding®, -1);

StockSpec = stockspec(Sigma, AssetPrice);

Define the call option:

OptSpec = {"call"};

Calculate price and all sensitivities of the European futures options:

OutSpec = {"All"}

[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec, ...
StockSpec, Settle, Maturity, OptSpec, Strike, "OutSpec”, OutSpec);

Price =

1.5903
0.3037

The first element of the Price vector represents the price of the call with an exercise
price of $20 ($1.59); the second is the price of the call with an exercise price of $25
($2.89).

The function impvbyblk is used to compute the implied volatility using the Black option
pricing model. Assuming that the previous European call futures are trading at $1.5903
and $0.3037, you can calculate their implied volatility:
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Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, ...
OptSpec, Strike, Price);

As expected, you get volatilities of 35%. If the call futures were trading at $1.50 and
$0.50 in the market, the implied volatility would be 33% and 42%:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, [1.50;0.5])

Volatility =

0.3301
0.4148

Pricing Using the Roll-Geske-Whaley Model

Consider two American call options, with exercise prices of $110 and $100 on June 1,
2008, that expire on June 1, 2009. Assume that the underlying stock pays dividends of
$0.001 on December 1, 2008. The stock is trading at $80 and has a volatility of 20% per
annum. The risk-free rate is 6% per annum. Using this data, calculate the price of the
American calls using the Roll-Geske-Whaley option pricing model:

AssetPrice = 80;

Settle = "Jun-01-2008";
Maturity = "Jun-01-2009";
Strike = [110; 100];

Rate = 0.06;
Sigma = 0.2;

DivAmount = 0.001;
DivDate = "Dec-01-2008";

Create RateSpec and StockSpec:
StockSpec = stockspec(Sigma, AssetPrice, {"cash"}, DivAmount, DivDate);

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,...
"EndDates”, Maturity, "Rates”, Rate, “"Compounding®, -1);

Calculate the call prices:

Price = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)

Price =
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0.8398
2.0236

The first element of the Price vector represents the price of the call with an exercise
price of $110 ($0.84); the second is the price of the call with an exercise price of $100
($2.02).

Pricing Using the Bjerksund-Stensland Model

Consider four American stock options (two calls and two puts) with an exercise price of
$100 that expire on July 1, 2008. Assume that the underlying stock pays a continuous
dividend yield of 4% as of January 1, 2008. The stock has a volatility of 20% per annum
and the risk-free rate is 8% per annum. Using this data, calculate the price of the
American calls and puts assuming the following current prices of the stock: $80, $90 (for
the calls) and $100 and $110 (for the puts):

Settle = "Jan-1-2008";

Maturity = "Jul-1-20087;

Strike = 100;

AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;

Rate = 0.08;
Sigma = 0.20;

Create RateSpec and StockSpec:
StockSpec = stockspec(Sigma, AssetPrice, {"continuous®}, DivYield);

RateSpec = intenvset("ValuationDate®, Settle, "StartDates”, Settle,...
“EndDates”, Maturity, "Rates”, Rate, “Compounding®, -1);

Define the option type:

OptSpec = {"call”; "call”; "put™; "put"};

Compute the option prices:

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)
Price =

0.4144
2.1804
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4.7253
1.7164

The first two elements of the Price vector represent the price of the calls ($0.41 and
$2.18), the last two elements represent the price of the put options ($4.72 and $1.72).
Use the function optstocksensbybjs to compute six sensitivities for the Bjerksund-
Stensland model: delta, gamma, vega, lambda, rho, and theta and the price of the
option. The selection of output parameters and their order is determined by the optional
input parameter OutSpec. This parameter is a cell array of character vectors, each one
specifying a desired output parameter. The order in which these output parameters

are returned by the function is the same as the order of the character vectors contained
in OutSpec. As an example, consider the same options as the previous example. To
calculate their delta, gamma, and price, build the cell array OutSpec as follows:

OutSpec = {"delta”, "gamma®, "price"};

The outputs of optstocksensbybjs will be in the same order as in OutSpec.

[Delta, Gamma, Price]= optstocksensbybjs(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, "OutSpec®, OutSpec)

Delta =

-0843
.2912
-4803
.2261

cNeoNoNe)

-0136
-0267
-0304
.0217

Price =

.4144
-1804
.7253
.7164

= hADNO

For more information on the Bjerksund-Stensland model, see “Closed-Form Solutions
Modeling” on page C-9.
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Compute American Option Prices Using the Barone-Adesi and Whaley
Option Pricing Model

Consider an American call option with an exercise price of $120. The option expires

on Jan 1, 2018. The stock has a volatility of 14% per annum, and the annualized
continuously compounded risk-free rate is 4% per annum as of Jan 1, 2016. Using this
data, calculate the price of the American call, assuming the price of the stock is $125 and
pays a dividend of 2%.

StartDate = "Jan-1-2016";
EndDate = "jan-1-2018";
Basis = 1;

Compounding = -1;

Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset("ValuationDate",StartDate, "StartDate”,StartDate, "EndDate” ,EndDate
"Rates”,Rates, "Basis”,Basis, "Compounding”,Compounding)

RateSpec =
struct with fields:

FinObj: "RateSpec*®
Compounding: -1
Disc: 0.9231
Rates: 0.0400
EndTimes: 2
StartTimes: 0O
EndDates: 737061
StartDates: 736330
ValuationDate: 736330
Basis: 1
EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;
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StockSpec = stockspec(Volatility,AssetPrice, "Continuous”,Dividend)

StockSpec

struct with fields:

FinObj: "StockSpec®
Sigma: 0.1400
AssetPrice: 125
DividendType: {"continuous"}
DividendAmounts: 0.0200
ExDividendDates: []

Define the American option.

OptSpec = “call”;

Strike = 120;

Settle = "Jan-1-2016";
Maturity = "jan-1-2018";

Compute the price for the American option.

Price = optstockbybaw(RateSpec, StockSpec,Settle,Maturity,OptSpec,Strike)

Price

14.5180

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy

| asiansensbyls | assetbhybls | assetsensbybls | basketbyju | basketbyls

| basketsensbyju | basketsensbyls | basketstockspec | basketstockspec

| cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls

| impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg |
lookbackbyls | lookbacksensbycvgsg | 1ookbacksensbyls | maxassetbystulz
| maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybaw | optstockbybjs | optstockbyblk |
optstockbybls | optstockbyls | optstockbyrgw | optstocksensbybaw

| optstocksensbybjs | optstocksensbyblk | optstocksensbybls |
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optstocksensbyls | optstocksensbyrgw | spreadbybjs | spreadbykirk |
spreadbyls | spreadsensbybjs | spreadsensbykirk | spreadsensbyls |
supersharebybls | supersharesensbybls

Related Examples
. “Pricing European Call Options Using Different Equity Models” on page 3-153
. “Compute the Option Price on a Future” on page 3-161

. “Pricing European Call Options Using Different Equity Models”
. “Pricing Asian Options” on page 3-104

More About

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41
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Pricing European Call Options Using Different Equity Models

This example illustrates how the Financial Instruments Toolbox™ is used to price
European vanilla call options using different equity models.

The example compares call option prices using the Cox-Ross-Rubinstein model, the
Leisen-Reimer model and the Black-Scholes closed formula.

Define the Call Instrument

Consider a European call option, with an exercise price of $30 on January 1, 2010. The
option expires on Sep 1, 2010. Assume that the underlying stock provides no dividends.
The stock is trading at $25 and has a volatility of 35% per annum. The annualized
continuously compounded risk-free rate is 1.11% per annum.

% Option

Settle = "Jan-01-2010";
Maturity = "Sep-01-2010-;
Strike = 30;

OptSpec = "call”;

% Stock
AssetPrice = 25;
Sigma = .35;

Create the Interest Rate Term Structure

StartDates = "01 Jan 2010°;
EndDates = "01 Jan 2013°;
Rates = 0.0111;

ValuationDate = "01 Jan 2010°%;
Compounding = -1;

RateSpec = intenvset("Compounding®,Compounding, “StartDates”, StartDates,...
"EndDates”, EndDates, "Rates”, Rates, "ValuationDate", ValuationDa

Create the Stock Structure

Suppose we want to create two scenarios. The first one assumes that AssetPrice is
currently $25, the option is out of the money (OTM). The second scenario assumes that
the option is at the money (ATM), and therefore AssetPriceATM = 30.

AssetPriceATM = 30;
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StockSpec = stockspec(Sigma, AssetPrice);
StockSpecATM = stockspec(Sigma, AssetPriceATM);

Price the Options Using the Black-Scholes Closed Formula

Use the function optstockbybls in the Financial Instruments Toolbox to compute the
price of the European call options.

% Price the option with AssetPrice = 25
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% Price the option with AssetPrice = 30
PriceBLSATM = optstockbybls(RateSpec, StockSpecATM, Settle, Maturity, OptSpec, Strike):

Build the Cox-Ross-Rubinstein Tree

% Create the time specification of the tree
NumPeriods = 15;

CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods);
% Build the tree

CRRTree = crrtree(StockSpec, RateSpec, CRRTimeSpec);
CRRTreeATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);

Build the Leisen-Reimer Tree

% Create the time specification of the tree
LRTimeSpec = Irtimespec(ValuationDate, Maturity, NumPeriods);

% Use the default method "PP1" (Peizer-Pratt method 1 inversion)to build
% the tree

LRTree = Irtree(StockSpec, RateSpec, LRTimeSpec, Strike);

LRTreeATM = Irtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);

Price the Options Using the Cox-Ross-Rubinstein (CRR) Model

PriceCRR = optstockbycrr(CRRTree, OptSpec, Strike, Settle, Maturity);
PriceCRRATM = optstockbycrr(CRRTreeATM, OptSpec, Strike, Settle, Maturity);

Price the Options Using the Leisen-Reimer (LR) Model

PriceLR = optstockbylr(LRTree, OptSpec, Strike, Settle, Maturity);
PriceLRATM = optstockbylr(LRTreeATM, OptSpec, Strike, Settle, Maturity);
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Compare BLS, CRR and LR Results

sprintf("PriceBLS: \t%f\nPriceCRR:
PriceCRR, PricelLR)

sprintf("\t== ATM ==\nPriceBLS ATM:

PriceCRRATM, PriceLRATM)

ans =

"PriceBLS: 1.275075
PriceCRR: 1.294979
PriceLR: 1.275838

ans =

" == ATM ==

PriceBLS ATM: 3.497891
PriceCRR ATM: 3.553938
PriceLR ATM: 3.498571

\t%f\nPriceLR:\t%f\n", PriceBLS,

\t%fF\nPriceCRR ATM: \t%Ff\nPriceLR ATM:\t%f\n", Pric

Convergence of CRR and LR Models to a BLS Solution

The following tables compare call option prices using the CRR and LR models against the

results obtained with the Black-Scholes

formula.

While the CRR binomial model and the Black-Scholes model converge as the number of
time steps gets large and the length of each step gets small, this convergence, except for
at the money options, is anything but smooth or uniform.

The tables below show that the Leisen-Reimer model reduces the size of the error with

even as few steps of 45.

Strike = 30, Asset Price = 30

#Steps LR CRR
15 3.4986 3.5539
25 3.4981 3.5314
45 3.4980 3.5165
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65 3.4979 3.5108
85 3.4979 3.5077
105 3.4979 3.5058
201 3.4979 3.5020
501 3.4979 3.4996
999 3.4979 3.4987

#Steps LR CRR
15 1.2758 1.2950
25 1.2754 1.2627
45 1.2751 1.2851
65 1.2751 1.2692
85 1.2751 1.2812
105 1.2751 1.2766
201 1.2751 1.2723
501 1.2751 1.2759
999 1.2751 1.2756

Analyze the Effect of the Number of Periods on the Price of the Options

The following graphs show how convergence changes as the number of steps in the
binomial calculation increases, as well as, the impact on convergence to changes to the
stock price. Observe that the Leisen-Reimer model removes the oscillation and produces
estimates close to the Black-Scholes model using only a small number of steps.

NPoints = 300;

% Cox-Ross-Rubinstein

NumPeriodCRR =5 : 1 : NPoints;
NbStepCRR = length(NumPeriodCRR);
PriceCRR = nan(NbStepCRR, 1);
PriceCRRATM = PriceCRR;

for 1 = 1 : NbStepCRR
CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriodCRR(1));
CRRT = crrtree(StockSpec, RateSpec, CRRTimeSpec);
PriceCRR(i) = optstockbycrr(CRRT, OptSpec, Strike,ValuationDate, Maturity) ;

CRRTATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);

PriceCRRATM(i) = optstockbycrr(CRRTATM, OptSpec, Strike,ValuationDate, Maturity) ;

end;
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% Now with Leisen-Reimer
NumPeriodLR =5 : 2 : NPoints;
NbStepLR = length(NumPeriodLR);
PriceLR = nan(NbSteplLR, 1);
PriceLRATM = PricelLR;

for 1 = 1 : NbSteplLR
LRTimeSpec = Irtimespec(ValuationDate, Maturity, NumPeriodLR(i));
LRT = Irtree(StockSpec, RateSpec, LRTimeSpec, Strike);
PricelLR(1) = optstockbylr(LRT, OptSpec, Strike,ValuationDate, Maturity) ;

LRTATM = Irtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);
PriceLRATM(i) = optstockbylr(LRTATM, OptSpec, Strike,ValuationDate, Maturity) ;
end;

First scenario: Out of the Money call option

% For Cox-Ross-Rubinstein

plot(NumPeriodCRR, PriceCRR);

hold on;

plot(NumPeriodCRR, PriceBLS*ones(NbStepCRR,1), "Color®",[0 0.9 0], "“linewidth", 1.5);

% For Leisen-Reimer
plot(NumPeriodLR, PriceLR, "Color®,[0.9 0 0], “linewidth®, 1.5);

% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:

YLimDelta = 5*abs(PriceLR(1) - PriceBLS);

ax = gca;

ax.YLim = [PriceBLS-YLimDelta PriceBLS+YLimDelta];

% Annotate Plot

titleString = sprintf("\nConvergence of CRR and LR models to a BLS Solution (OTM)\nStr
title(titleString)

ylabel ("Option Price®)

xlabel ("Number of Steps*®)

legend("CRR", "BLS", "LR", "Location®, “NorthEast®)
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Convergence of CRR and LR models to a BLS Solution (OTM)
Strike = 30, Asset Price =25
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Second scenario: At the Money call option

% For Cox-Ross-Rubinstein

figure;

plot(NumPeriodCRR, PriceCRRATM);

hold on;

plot(NumPeriodCRR, PriceBLSATM*ones(NbStepCRR,1), Color”,[0 0.9 0], "“linewidth®, 1.5);

% For Leisen-Reimer
plot(NumPeriodLR, PriceLRATM, "Color®,[0.9 0 0], “linewidth®, 1.5);

% Concentrate in the area of interest by clipping on the Y axis at 5x the

% LR Price:
YLimDelta = 5*abs(PriceLRATM(1) - PriceBLSATM);

3-158



Pricing European Call Options Using Different Equity Models

ax = gca;
ax.YLim = [PriceBLSATM-YLimDelta PriceBLSATM+YLimDelta];

% Annotate Plot

titleString = sprintf("\nConvergence of CRR and LR models to a BLS Solution (ATM)\nStr
title(titleString)

ylabel ("Option Price®)

xlabel ("Number of Steps”)

legend("CRR", "BLS", "LR", "Location®, “NorthEast®)

Convergence of CRR and LR models to a BLS Solution (ATM)
Strike = 30, Asset Price = 30
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See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy
| asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls
| basketsensbyju | basketsensbyls | basketstockspec | basketstockspec
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| cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls

| impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg |
lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | maxassetbystulz
| maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybjs | optstockbyblk | optstockbybls |
optstockbyls | optstockbyrgw | optstocksensbybaw | optstocksensbybjs

| optstocksensbyblk | optstocksensbybls | optstocksensbyls |
optstocksensbyrgw | spreadbybjs | spreadbykirk | spreadbyls |
spreadsensbybjs | spreadsensbykirk | spreadsensbyls | supersharebybls |

supersharesensbybls

Related Examples
“Equity Derivatives Using Closed-Form Solutions” on page 3-140

“Compute the Option Price on a Future” on page 3-161
“Pricing Asian Options” on page 3-104

More About
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-41
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Compute the Option Price on a Future

Consider a call European option on the Crude Oil Brent futures. The option expires on
December 1, 2014 with an exercise price of $120. Assume that on April 1, 2014 futures
price is at $105, the annualized continuously compounded risk-free rate is 3.5% per
annum and volatility is 22% per annum. Using this data, compute the price of the option.

Define the RateSpec.

ValuationDate = "January-1-2014-;

EndDates = "January-1-20157;

Rates = 0.035;

Compounding = -1;

Basis = 1;

RateSpec = intenvset("ValuationDate", ValuationDate, °“StartDates®, ValuationDate, ...
"EndDates”, EndDates, "Rates”, Rates, “Compounding®, Compounding, "Basis®, Basis")

RateSpec = struct with fields:
FinObj: "RateSpec*®
Compounding: -1
Disc: 0.9656
Rates: 0.0350
EndTimes: 1
StartTimes: 0
EndDates: 735965
StartDates: 735600
ValuationDate: 735600
Basis: 1
EndMonthRule: 1

Define the StockSpec.

AssetPrice = 105;
Sigma = 0.22;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
FinObj: "StockSpec*®
Sigma: 0.2200
AssetPrice: 105
DividendType: []
DividendAmounts: O
ExDividendDates: []
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Define the option.

Settle = "April-1-2014~;
Maturity = "Dec-1-2014%;
Strike = 120;

OptSpec = {"call"};

Price the futures call option.

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2.5847

See Also

asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy

| asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls
| basketsensbyju | basketsensbyls | basketstockspec | basketstockspec
| cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls

| impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg |
lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | maxassetbystulz
| maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybaw | optstockbybjs | optstockbyblk |
optstockbybls | optstockbyls | optstockbyrgw | optstocksensbybaw

| optstocksensbybjs | optstocksensbyblk | optstocksensbybls |
optstocksensbyls | optstocksensbyrgw | spreadbybjs | spreadbykirk |
spreadbyls | spreadsensbybjs | spreadsensbykirk | spreadsensbyls |
supersharebybls | supersharesensbybls

Related Examples

. “Equity Derivatives Using Closed-Form Solutions” on page 3-140
. “Pricing European Call Options Using Different Equity Models”
. “Pricing Asian Options” on page 3-104

More About

. “Supported Equity Derivatives” on page 3-24
. “Supported Energy Derivatives” on page 3-41
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* “Hedging” on page 4-2

+ “Hedging Functions” on page 4-3

* “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-16
+ “Specifying Constraints with ConSet” on page 4-31

+ “Hedging with Constrained Portfolios” on page 4-36
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Hedging

4-2

Hedging is an important consideration in modern finance. Whether or not to hedge,
how much portfolio insurance is adequate, and how often to rebalance a portfolio are
important considerations for traders, portfolio managers, and financial institutions alike.

If there were no transaction costs, financial professionals would prefer to rebalance
portfolios continually, thereby minimizing exposure to market movements. However,
in practice, the transaction costs associated with frequent portfolio rebalancing may
be expensive. Therefore, traders and portfolio managers must carefully assess the cost
required to achieve a particular portfolio sensitivity (for example, maintaining delta,
gamma, and vega neutrality). Thus, the hedging problem involves the fundamental
tradeoff between portfolio insurance and the cost of such insurance coverage.

See Also
hedgeopt | hedgeslIf

Related Examples

. “Portfolio Creation” on page 1-7

. “Adding Instruments to an Existing Portfolio” on page 1-10

. “Instrument Constructors” on page 1-18

. “Creating Instruments or Properties” on page 1-19

. “Searching or Subsetting a Portfolio” on page 1-21

. “Hedging Functions” on page 4-3

. “Hedging with hedgeopt” on page 4-4

. “Self-Financing Hedges with hedgeslf’ on page 4-11

. “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-12

. “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page
4-16

. “Specifying Constraints with ConSet” on page 4-31
. “Portfolio Rebalancing” on page 4-33
. “Hedging with Constrained Portfolios” on page 4-36

More About

. “Instrument Constructors” on page 1-18



Hedging Functions

Hedging Functions

Hedging is an investment to reduce the risk of adverse price movements in an asset.

In this section...

“Introduction” on page 4-3
“Hedging with hedgeopt” on page 4-4

“Self-Financing Hedges with hedgeslf’ on page 4-11

Introduction

Financial Instruments Toolbox offers two functions for assessing the fundamental
hedging tradeoff, hedgeopt and hedgeslIT.

The first function, hedgeopt, addresses the most general hedging problem. It allocates
an optimal hedge to satisfy either of two goals:

+  Minimize the cost of hedging a portfolio given a set of target sensitivities.

*  Minimize portfolio sensitivities for a given set of maximum target costs.

hedgeopt allows investors to modify portfolio allocations among instruments according
to either of the goals. The problem is cast as a constrained linear least-squares problem.
For additional information about hedgeopt, see “Hedging with hedgeopt” on page

4-4,

The second function, hedgeslf, attempts to allocate a self-financing hedge among
a portfolio of instruments. In particular, hedges 1T attempts to maintain a constant
portfolio value consistent with reduced portfolio sensitivities (that is, the rebalanced
portfolio is hedged against market moves and is closest to being self-financing). If
hedgeslI T cannot find a self-financing hedge, it rebalances the portfolio to minimize
overall portfolio sensitivities. For additional information on hedgeslT, see “Self-
Financing Hedges with hedgeslf” on page 4-11.

The examples in this section consider the delta, gamma, and vega sensitivity measures.
In this toolbox, when you work with interest-rate derivatives, delta is the price sensitivity
measure of shifts in the forward yield curve, gamma is the delta sensitivity measure of
shifts in the forward yield curve, and vega is the price sensitivity measure of shifts in the
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volatility process. See bdtsens or hjymsens for details on the computation of sensitivities
for interest-rate derivatives.

For equity exotic options, the underlying instrument is the stock price instead of the
forward yield curve. So, delta now represents the price sensitivity measure of shifts in
the stock price, gamma is the delta sensitivity measure of shifts in the stock price, and
vega 1s the price sensitivity measure of shifts in the volatility of the stock. See crrsens,
egpsens, ittsens, or sttsens for details on the computation of sensitivities for equity
derivatives.

For examples showing the computation of sensitivities for interest-rate based derivatives,
see “Computing Instrument Sensitivities” on page 2-72. Likewise, for examples showing
the computation of sensitivities for equity exotic options, see “Computing Equity
Instrument Sensitivities” on page 3-134.

Note The delta, gamma, and vega sensitivities that the toolbox calculates are dollar
sensitivities.

Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB bank format.
Although the calculations are performed in floating-point double precision, only two
decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HIMInstSet obtained from the
example file deriv.mat. The portfolio consists of eight instruments: two bonds, one bond
option, one fixed-rate note, one floating-rate note, one cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current portfolio
holdings (allocations), and a matrix of instrument sensitivities. To create these inputs,
load the example portfolio into memory

load deriv.mat;

compute price and sensitivities

[Delta, Gamma, Vega, Price] = hjmsens(HIMTree, HIMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will
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be approximated.
and extract the current portfolio holdings.
Holdings = instget(HIMInstSet, "FieldName®", "Quantity”);

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of
sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the
portfolio, and each column with a different sensitivity measure.

To summarize the portfolio information

disp([Price Holdings Sensitivities])

98.72 100.00 -272.65 1029.90 0.00
97.53 50.00 -347.43 1622.69 -0.04
0.05 -50.00 -8.08 643.40 34.07
98.72 80.00 -272.65 1029.90 0.00
100.55 8.00 -1.04 3.31 0
6.28 30.00 294.97 6852.56 93.69
0.05 40.00 -47.16 8459.99 93.69
3.69 10.00 -282.05 1059.68 0.00

The first column above is the dollar unit price of each instrument, the second is the
holdings of each instrument (the quantity held or the number of contracts), and the
third, fourth, and fifth columns are the dollar delta, gamma, and vega sensitivities,
respectively.

The current portfolio sensitivities are a weighted average of the instruments in the
portfolio.

TargetSens = Holdings®™ * Sensitivities
TargetSens =
-61910.22 788946.21 4852.91

Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio.
The first form of hedgeopt minimizes the cost of hedging a portfolio given a set of target
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sensitivities. If you want to maintain your existing portfolio composition and exposure,
you should be able to do so without spending any money. To verify this, set the target
sensitivities to the current sensitivities.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, [1., [1. [1, TargetSens)

Sens =

61910.22 788946 .21 4852.91

Cost =

Quantity" =

100.00
50.00
-50.00
80.00
8.00
30.00
40.00
10.00

Portfolio composition and sensitivities are unchanged, and the cost associated with doing
nothing is zero. The cost is defined as the change in portfolio value. This number cannot
be less than zero because the rebalancing cost is defined as a nonnegative number.

If ValueO and Valuel represent the portfolio value before and after rebalancing,
respectively, the zero cost can also be verified by comparing the portfolio values.

ValueO = Holdings® * Price

ValueO

23674.62

Valuel = Quantity * Price

Valuel

23674.62
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Partially Hedged Portfolio

Building on the example in “Maintaining Existing Allocations” on page 4-5, suppose
you want to know the cost to achieve an overall portfolio dollar sensitivity of [-23000
-3300 3000], while allowing trading only in instruments 2, 3, and 6 (holding the
positions of instruments 1, 4, 5, 7, and 8 fixed). To find the cost, first set the target
portfolio dollar sensitivity.

TargetSens = [-23000 -3300 3000];
Then, specify the instruments to be fixed.
FixedInd = [1 4 5 7 8];

Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, Fixedind, [], [], TargetSens);

and again examine the results.

Sens =

-23000.00 -3300.00 3000.00
Cost =

19174.02
Quantity”® =

100.00
-141.03
137.26
80.00
8.00
-57.96
40.00
10.00

Recompute Valuel, the portfolio value after rebalancing.
Valuel = Quantity * Price

Valuel =
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4500.60

As expected, the cost, $19174.02, is the difference between ValueO and Valuel,
$23674.62 — $4500.60. Only the positions in instruments 2, 3, and 6 have been changed.

Fully Hedged Portfolio

The example in “Partially Hedged Portfolio” on page 4-7 illustrates a partial hedge,
but perhaps the most interesting case involves the cost associated with a fully hedged
portfolio (simultaneous delta, gamma, and vega neutrality). In this case, set the target
sensitivity to a row vector of Os and call hedgeopt again. The following example uses
data from “Hedging with hedgeopt” on page 4-4.

TargetSens = [0 O 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,
Holdings, Fixedind, [], []., TargetSens);

Examining the outputs reveals that you have obtained a fully hedged portfolio

Sens =

-0.00 -0.00 -0.00

but at an expense of over $20,000.

Cost =
23055.90

The positions required to achieve a fully hedged portfolio

Quantity”® =

100.00
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

result in the new portfolio value
Valuel = Quantity * Price

Valuel =
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618.72
Minimizing Portfolio Sensitivities

The examples in “Fully Hedged Portfolio” on page 4-8 illustrate how to use

hedgeopt to determine the minimum cost of hedging a portfolio given a set of target
sensitivities. In these examples, portfolio target sensitivities are treated as equality
constraints during the optimization process. You tell hedgeopt what sensitivities you
want, and it tells you what it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of maximum
target costs. For this goal, the target costs are treated as inequality constraints during
the optimization process. You tell hedgeopt the most you are willing spend to insulate
your portfolio, and it tells you the smallest portfolio sensitivities you can get for your
money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities along
the entire cost frontier. From the previous examples, you know that spending nothing
replicates the existing portfolio, while spending $23,055.90 completely hedges the
portfolio.

Assume, for example, you are willing to spend as much as $50,000, and want to see
what portfolio sensitivities will result along the cost frontier. Assume that the same
instruments are held fixed, and that the cost frontier is evaluated from $0 to $50,000 at
increments of $1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds available (the
amount you are willing to spend)

plot(MaxCost/1000, Cost/1000, “red"), grid

xlabel ("Funds Available for Rebalancing ($1000""s)")
ylabel ("Actual Rebalancing Cost ($1000""s)")

title ("Rebalancing Cost Profile®)
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and the portfolio dollar sensitivities versus the funds available.

figure

plot(MaxCost/1000, Sens(:,1), "-red")

hold("on*")

plot(MaxCost/1000, Sens(:,2), "-.black")

plot(MaxCost/1000, Sens(:,3), "--blue®)

grid

xlabel ("Funds Available for Rebalancing ($1000""s)")

ylabel ("Delta, Gamma, and Vega Portfolio Dollar Sensitivities®)
title ("Portfolio Sensitivities Profile®)

legend("Delta®, "Gamma®, "Vega®, 0)
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Self-Financing Hedges with hedgeslf

The figures Rebalancing Cost Profile and Funds Available for Rebalancing indicate that
there is no benefit because the funds available for hedging exceed $23,055.90, the point of
maximum expense required to obtain simultaneous delta, gamma, and vega neutrality.
You can also find this point of delta, gamma, and vega neutrality using hedgeslf.

[Sens, Valuel, Quantity] = hedgeslf(Sensitivities, Price,...
Holdings, FixedInd);

Sens =
-0.00
-0.00
-0.00
Valuel =

4-11
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618.72
Quantity =

100.00
-182.36
-19.55
80.00
8.00
-32.97
40.00
10.00

Similar to hedgeopt, hedgesl T returns the portfolio dollar sensitivities and instrument
quantities (the rebalanced holdings). However, in contrast, the second output parameter
of hedgesI T is the value of the rebalanced portfolio, from which you can calculate the
rebalancing cost by subtraction.

ValueO - Valuel
ans =

23055.90

In this example, the portfolio is clearly not self-financing, so hedgesl T finds the best
possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related to the
results shown above for hedgeslf. Suppose, instead of directly specifying the funds
available for rebalancing (the most money you are willing to spend), you want to simply
specify the number of points along the cost frontier. This call to hedgeopt samples

the cost frontier at 10 equally spaced points between the point of minimum cost (and
potentially maximum exposure) and the point of minimum exposure (and maximum
cost).

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,...
Holdings, Fixedind, 10)

Sens =
-32784.46 2231.83 -49694 .33
-29141.74 1983.85 -44172.74
-25499.02 1735.87 -38651.14
-21856.30 1487.89 -33129.55
-18213.59 1239.91 -27607 .96
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-14570.87 991.93 -22086.37
-10928.15 743.94 -16564.78
-7285.43 495 .96 -11043.18
-3642.72 247.98 -5521.59

0.00 -0.00 0.00

Cost =

0.00
2561.77
5123.53
7685.30
10247.07
12808.83
15370.60
17932.37
20494.14
23055.90

Now plot this data.

figure

plot(Cost/1000, Sens(:,1), "-red")

hold("on*")

plot(Cost/1000, Sens(:,2), "-.black®)

plot(Cost/1000, Sens(:,3), "--blue”)

grid

xlabel ("Rebalancing Cost ($1000""s)")

ylabel ("Delta, Gamma, and Vega Portfolio Dollar Sensitivities®)
title ("Portfolio Sensitivities Profile®)

legend("Delta®, "Gamma®, "Vega®, 0)
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In this calling form, hedgeopt calls hedgeslT internally to determine the maximum
cost needed to minimize the portfolio sensitivities ($23,055.90